

SCIEX OS Software

for SCIEX Triple Quad and QTRAP Systems

Software User Guide

This document is provided to customers who have purchased SCIEX equipment to use in the operation of such SCIEX equipment. This document is copyright protected and any reproduction of this document or any part of this document is strictly prohibited, except as SCIEX may authorize in writing.

Software that may be described in this document is furnished under a license agreement. It is against the law to copy, modify, or distribute the software on any medium, except as specifically allowed in the license agreement. Furthermore, the license agreement may prohibit the software from being disassembled, reverse engineered, or decompiled for any purpose. Warranties are as stated therein.

Portions of this document may make reference to other manufacturers and/or their products, which may contain parts whose names are registered as trademarks and/or function as trademarks of their respective owners. Any such use is intended only to designate those manufacturers' products as supplied by SCIEX for incorporation into its equipment and does not imply any right and/or license to use or permit others to use such manufacturers' and/or their product names as trademarks.

SCIEX warranties are limited to those express warranties provided at the time of sale or license of its products and are the sole and exclusive representations, warranties, and obligations of SCIEX. SCIEX makes no other warranty of any kind whatsoever, expressed or implied, including without limitation, warranties of merchantability or fitness for a particular purpose, whether arising from a statute or otherwise in law or from a course of dealing or usage of trade, all of which are expressly disclaimed, and assumes no responsibility or contingent liability, including indirect or consequential damages, for any use by the purchaser or for any adverse circumstances arising therefrom. (GEN-IDV-09-10816-D)

For Research Use Only. Not for use in Diagnostic Procedures.

Trademarks and/or registered trademarks mentioned herein, including associated logos, are the property of AB Sciex Pte. Ltd., or their respective owners, in the United States and/or certain other countries (see sciex.com/trademarks).

AB Sciex[™] is being used under license.

© 2022 DH Tech. Dev. Pte. Ltd.

AB Sciex Pte. Ltd. Blk33, #04-06 Marsiling Industrial Estate Road 3 Woodlands Central Industrial Estate, Singapore 739256

1 Introduction	8
Software Overview	8
Open the Software	8
About the Home Page	8
About the Ribbon and Launcher	11
About the Status Panel	13
Data Acquisition Panel	
Lock the Screen	
Unlock the Software	
Electronic Laboratory Notebook Support	
Documentation Symbols and Conventions	
2 Operating Instructions—Device Configuration	19
Add Devices	19
Delete Devices	20
Edit Device Settings	20
3 Operating Instructions—Software Configuration	
Add a Dest Directory	22
Add a Rool Directory	22
Remove a Root Directory	
Add a Project	23
Add a Subfolder	
Select Laboratory Information Management System (LIMS) Settings	
Enable Full Screen Mode	
Select Regional Settings	
Manage the Compound Libraries	
Import a Library view Software Package	
Import a Compound Database	
Import a Cliquid Software Package	
Import an Excel File	
Import a Library Database Snapshot	
Import a Library Package from a Third Party	
Install a Licensed LibraryView Software Package	
Compound Conflicts	
	31

Add a Mass Spectrum to a Compound	34
4 Operating Instructions—User Workflows	35
Analysts	
Method Developers	
Administrators	36
Reviewers	
5 Operating Instructions—Acquisition	
MS Method Workspace	
Create an MS Method	
Create an IDA Method	
Create an MRM Method Using Guided MRM	
Create an MRM Method Using FIA	
Create an MS ³ Method Using Infusion	47
Create an sMRM Algorithm Method	
Create an stMRM Algorithm Method	
Create a Method with Multiple Experiments	53
Open an MS Method	
Convert an Analyst Software Method	55
Run an MS Method Manually	
Work With Default Settings	
LC Method Workspace	59
Create an LC Method	59
AE Method Workspace	59
Create an AE Method	59
Batch Workspace	60
Manage the Batch	65
Import a Batch from a File	69
Import a Batch from a LIMS	70
Create a Batch Manually	71
Use the Plate Layout Feature to Create a Batch (LC System)	73
Use the Plate Layout Feature to Create a Batch (Echo [®] MS System)	74
Manage Component Concentrations	76
Manage Decision Rules	76
Equilibrate the System	78
Submit a Batch	79
Submit a Single Sample to the Queue from the Batch Workspace	79
Submit Multiple Samples to the Queue from the Batch Workspace	80
Queue Workspace	80
Manage the Queue	82
Show or Hide Columns	85
Queue Icons	
MS Tune Workspace	89
Optimize the Detector	

	une MS Scans	91
R	estore Instrument Data	
6 Opera	ating Instructions—Processing	96
Expl	orer Workspace	96
0	pen Samples	
V	erify the Presence of an Analyte	96
E	xtract lons	
0	pen a Total Ion Chromatogram	98
0	pen a Base Peak Chromatogram	100
S	how the Data and Peaks Table	
S	how Sample Information	
S	how the Graph Selection Information	105
E	dit Settings in Graphs	107
V	/ork with Data in Graphs	108
U	se the Two-Pane Operation Tools	113
N	love Panes or Windows	115
P	erform a Gaussian Smooth	115
Т	hreshold Data	
S	ubset Data Using Graph Selection	117
В	aseline Subtract Chromatogram	118
0	ffset Chromatogram	
С	entroid a Spectrum	120
E	xport Data as Text	121
E	xport the Peak List as Text	
P	rint Data	122
R	eset Options	122
S	et Options	123
Anal	ytics Workspace	124
D	efine the Default Processing Parameters for the Project	124
N	/ork with Workspace Layouts	
S	et Project Secure Export Settings	
E	nable the Project Modified Peak Warning	
C	reate a Processing Method	
P	rocess Data	
V	/ork With Results Tables	
R	eview Peaks	
A	nalyze Data Using Statistics	
V	iew the Calibration Curve	
A	nalyze Data Using Metric Plots	
Edit	Report Iemplates	
R	eporter remplates	

7 Events	
Event Logs	

View Logs	
Archive Logs	
View Archived Logs	
Print Logs	
Event Log Archives	
8 Auditing	
View the Audit Trail Records	
Filter Audited Events Using a Keyword Search	
Filter Audited Events Using a Set of Specified Criteria	
Print the Audit Trail	
A Theory of Operation—Software	
Data Handling	
Scan Techniques	
Quadrupole-Mode Scan Types	
Linear Ion Trap Scan Types	
Information Dependent Acquisition	
Different Data View	
Chromatograms	
Spectra	
sMRM Algorithm	
sMRM Algorithm Triggering	
stMRM Algorithm	
Retention Time Mode	
Group Mode	
Scheduled Ionization	
Decision Rules	
Dynamic Background Subtraction Algorithm	
Quantitative Analysis	
Standard Addition	
Mass Reconstruction	
Qualitative Analysis	229
Retention Time	229
Isotope Pattern	229
Library Searching	230
Formula Finding	231
Integration	231
AutoPeak Integration Algorithm Parameters	232
MO4 Integration Algorithm Parameters	
Regression	2/1
Regression Equations	240 2/10
Weighting Types	240 2/10
Correlation Coefficient	240 2/1
Regression Types	
regression rypes	

Automatic Removal of Outliers	
Results Tables	
Calibration Curves	
Signal to Noise Ratio	
Relative Noise and Signal-to-Noise Calculations	247
Signal-to-Noise Using Peak-to-Peak	
Signal-to-Noise Using Standard Deviation	251
Define Noise Regions	
Calculated Columns	
Navigating the Calculated Column Interface	
Simple Extraction of Non-default Information	
Simple Arithmetic	
More Complex Functions	
IF Statements	
Treat Resulting Text Values As	
B Exact Masses and Chemical Formulas	
Contact Us	
Customer Training	
Online Learning Center	
SCIEX Support	
CyberSecurity	
Documentation	261

Software Overview

The SCIEX OS software contains instrument control, data acquisition, data processing, and reporting functionality, all in one package.

Open the Software

- 1. Select the software from the Start menu:
 - Windows 7: Start > All Programs > SCIEX > SCIEX OS > SCIEX OS
 - Windows 10: Start > SCIEX OS > SCIEX OS

Note: If the **LibraryViewServiceHost** service is not running, then the User Account Control dialog is shown. Click **Yes** to start the service.

If the software is configured for Integrated mode, then the Home page opens.

If the software is configured for Mixed mode, then the Logon dialog opens. Continue with the following step.

- 2. If the Central Administrator Console (CAC) software is being used, and SCIEX OS is configured for centralized administration, then select the workgroup to log on to.
- If the Logon dialog opens, type the user name and password of a user who is authorized to use the software, and then click **OK**. The Home page opens.

About the Home Page

The Home page consists of workspace tiles, grouped by function, the status panel, the ribbon, and the launcher. Access to workspaces is determined by the role assigned to the user, as well as the license.

Figure 1-1 Home Page

ltem	Description
1	A light blue vertical line at the left side of a dark blue tile indicates that the workspace is open, that work is in progress, and that the user has access to the functionality. The status of the open workspace is shown on the tile.
2	A dark blue tile indicates that the workspace is closed.
3	A gray tile indicates that the workspace is not enabled.
4	The close icon (×) is shown in the top right corner of the tile when the workspace is open.
5	Access to the launcher. The launcher contains a list of all of the
	workspaces. Click 🍸 to the right of the icon to open the launcher.
6	The ribbon. Refer to the section: About the Ribbon and Launcher. To navigate to another workspace, click a workspace in the list. The currently open workspace remains active and the workspace icon is shown in the ribbon. To close the active workspace, click
	page, click 🙆.
7	Functions: Acquisition, Processing, and Management. Access is dependent on the role assigned to the user and the licensing.

Introduction

ltem	Description
8	Status of the system. Click the title bar to show or hide the status panel.
9	The status panel. Refer to the section: About the Status Panel.

Table 1-1 Functions

Label	Description
Acquisition	Use the functions in the Acquisition group to create methods and batches, and to submit samples for acquisition. Users can also tune the mass spectrometer using MS Tune.
Processing	Use the functions in the Processing group to quantitatively or qualitatively process data.
Management	Use the functions in the Management group to configure devices, configure access to the software, and view the event log.

Table 1-2 Tiles

Label	Description
Batch	Use the Batch workspace to create batches and submit them to the queue. Refer to the section: Batch Workspace.
Queue	Use the Queue workspace to monitor acquisition and processing status, and to manage samples in the queue. Refer to the section: Queue Workspace.
MS Method	Use the MS Method workspace to create and edit MS methods. Refer to the section: MS Method Workspace.
LC Method or AE Method	Use the LC Method workspace to create and edit LC methods. Refer to the section: LC Method Workspace. If an Echo [®] MS Module is active, then the AE Method tile is shown. Use it to create and edit acoustic injection (AE) methods. Refer to the section: AE Method Workspace.
MS Tune	Use the MS Tune workspace to optimize the mass spectrometer. Refer to the section: MS Tune Workspace.
Explorer	Use the Explorer workspace to examine acquired data. Refer to the section: Explorer Workspace.
Analytics	Use the Analytics workspace to process and review acquired data. Refer to the section: Analytics Workspace.

Table 1-2 Tiles (continued)

Label	Description
Configuration	Use the Configuration workspace to configure the software, add and activate devices, assign user roles, and create and assign audit maps. Refer to the document: <i>Help System</i> .
Library	Use the Library workspace to manage compound libraries.
Event Log	Use the Event Log workspace to view system events, including errors and warnings. Refer to the document: <i>Laboratory Director Guide</i> .
Audit Trail	Use the Audit Trail workspace to view records of software events, such as configuration changes and data processing. Refer to the document: <i>Laboratory Director Guide</i> .

About the Ribbon and Launcher

Figure 1-2 Ribbon

ltem	Description
1	Allows the user to open another workspace by selecting it from the list. This workspace becomes the active workspace. The previously active workspace remains open. Refer to the figure: Figure 1-3.
2	Shows the name of the active workspace.
3	Opens the Home page.
4	Shows the open workspaces. The active workspace is shown in white. To make an open workspace active, click the workspace icon.
5	Shows the currently logged in user.
6	Shows the system status. Refer to the section: About the Status Panel.
7	Opens the Help System. Click ?.

Introduction

Figure 1-3 Launcher

ltem	Description
1	Shows the list of workspaces. Click 🎽.
2	Shows the name of the active workspace.
3	Shows the status of the workspaces. A dark blue background indicates that the workspace is closed. A light blue vertical bar on the left indicates that the workspace is open. A light blue background indicates that the workspace is active.
4	Closes an open workspace. Click 🔕.
5	Closes the active workspace. Click 🙆.

About the Status Panel

To open this panel, click the status panel title bar. Refer to the figure: Figure 1-2.

The icon, text, and color of the status title bar change to indicate the status of the system. Use the status panel to do the following:

- Add or select a project.
- View the samples remaining in the queue and the estimated time remaining for the batch to be acquired.
- View the number of samples remaining in the queue and the estimated time remaining for the queue to be completed.
- View the system status or status of the individual devices that have been activated in the Devices list in the Configuration workspace.
- Access direct device control to start or stop devices.
- View device details.
- Put the mass spectrometer or LC system in Standby state.
- Equilibrate the system.

Figure 1-4 SCIEX OS Status Panel

Table 1-3 Status Panel Sections

Label	Description
Projects	Shows the current project. Click Create Project () to create a project. Refer to the section: Add a Project.

Label	Description
Queue	Shows the status of the samples in the queue. Information is provided for:
	Samples waiting
	Sample time remaining
	Acquisition time remaining
	Refer to the section: Manage the Queue.
Devices	Lists the devices in the active configuration. From this list, the devices can be managed in the following ways:
	Click the device name to open and view the Device Details dialog.
	• View the status of the icon or move the cursor over the status icon to show the status of the device.
	 Click Direct device control (^{III}) to open the Device Control dialog.
Direct Control	Allows the user to control the device manually. Click Standby to put the system in Standby state. Click Equilibrate to open the Equilibrate dialog. Refer to the section: Equilibrate the System.

Table 1-3 St	atus Panel	Sections	(continued)	
		Occubils	(continueu)	

Table 1-4 Status Panel Functions

To Do This	Do This
Show the status panel	Click the status panel title bar, at the top of the minimized status panel. Refer to the figure: Figure 1-2.
Hide the status panel	Click the title bar of the status panel when it is showing.
Change the active project	Select a project from the Projects list on the status panel.
	Tip! Click Create Project () to create a project. Type the project name and then click OK .

To Do This Do This	
Control the device status	 On the status panel, click Direct device control (¹) at the right of the device title.
	The Device Control dialog opens.
	2. Start, stop, or update the device, as required.
	3. Click OK .
	Use this procedure to obtain detailed feedback on the status of a device. For example, temperatures, pressures, and voltages. To monitor the device status, click the icon at the far right of the device title.

Table 1-4 Status Panel Functions (continued)

Data Acquisition Panel

Use the Data Acquisition panel to start and monitor real-time data acquisition. Users can also edit the acquisition method parameters during real-time data acquisition, as well as save data or open data in the Explorer workspace.

Tip! Click the top of the Data Acquisition panel and then drag it up or down to resize the contents.

Figure 1-5 Data Acquisition Panel

ltem	Description
1	Shows the TIC and spectrum or XIC. If a detector is active, then DAD or UV data is also shown.

Item	Description
2	MS method. Hover to show the name of the MS method that is running.
3	LC method. Hover to show the name of the LC method that is running.
4	Click Start to start manual acquisition. Click Start > Start with LC to open the Start with LC dialog.
5	Click to stop manual acquisition.
6	Click to save data.
7	Click to explore data in real time.

Lock the Screen

To prevent unauthorized access to the software when the workstation is unattended, lock the software. While the software is locked, any acquisition or processing that is in progress continues.

When the Auto logoff time expires, the user is logged off. Acquisition continues.

Note: Logoff does not occur if processing is in progress, or if the Results Table has not been saved.

1. Press Ctrl+Q.

Figure 1-6 Lock Screen Dialog

Loc	k Screen	X
0	Lock the screen?	
	OK Cancel	

2. Click OK.

The SCIEX OS is Locked dialog opens.

Unlock the Software

If the software is locked, then the user who is currently logged on can unlock it.

Note: Other users cannot unlock the software, but a user with the **Force User Logoff** permission can log off the current user.

In the SCIEX OS is Locked dialog, type the password for the current user, and then click **Unlock**.

Electronic Laboratory Notebook Support

SCIEX does not support any one specific electronic laboratory notebook (ELN) solution, but SCIEX does offer products, tools and services to facilitate data import and export for integration with ELN systems:

- **Batch Creation:** SCIEX OS can import batch files in csv and txt format. Refer to Batch Workspace.
- **Results Upload:** SCIEX OS can export data to a txt file for use in a LIMS system. Refer to Analytics Workspace.

Documentation Symbols and Conventions

The following symbols and conventions are used throughout the guide.

DANGER! Danger signifies an action that leads to severe injury or death.

WARNING! Warning signifies an action that could cause personal injury if precautions are not followed.

CAUTION: Caution signifies an operation that could cause damage to the system or corruption or loss of data if precautions are not followed.

Note: Note emphasizes significant information in a procedure or description.

Tip! Tip provides useful information that helps apply the techniques and procedures in the text for a specific need and provides shortcuts, but is not essential to the completion of a procedure.

Operating Instructions—Device Configuration

2

Use the Configuration workspace to:

- Activate and deactivate devices
- Add and delete devices
- Edit device settings
- Test the devices

Add Devices

Note: To avoid any activation issues, always add the mass spectrometer before adding any other devices.

- 1. Open the Configuration workspace.
- 2. Click **Devices**.
- 3. If any devices are active, then click **Deactivate**.
- 4. Click **Add**. The Device dialog opens.
- 5. In the **Type** list, select the required type.
- 6. In the Model list, select the required model.
- 7. Click Settings to edit settings or restore default values.
- 8. To configure the mass spectrometer to use the High Mass or Low Mass feature, in the **Instrument Model** section of the Settings dialog, select one of the following options:
 - Low Mass: To operate in limited mass range, high sensitivity operating mode, select this option. The maximum mass range is 50 Da to 1000 Da for linear ion trap (LIT) scans and 5 Da to 1250 Da for quadrupole scans.
 - **High Mass**: To operate in extended mass range operating mode, select this option. The maximum mass range is 50 Da to 2000 Da for LIT scans and 5 Da to 2000 Da for quadrupole scans.
- 9. Click **Test Device** to verify that the device is configured correctly and available for use.
- 10. Click Save.
- 11. Repeat step 4 to step 10 as required.

12. Select the **Activate** check box beside each device to be activated, and then click **Activate Devices**.

All of the selected devices are activated.

13. To edit or delete devices, refer to the Help System.

Delete Devices

Note: If the device that is being deleted is part of an integrated system, then all of the devices in the integrated system are deleted. Users cannot delete one device in an integrated system.

- 1. Open the Configuration workspace.
- 2. Click **Devices**.
- 3. Click **Deactivate**.
- 4. Select a device.
- 5. Click Delete.
- 6. Select the **Activate** check box beside each device to be activated, and then click **Activate Devices**.

All of the selected devices are activated.

Edit Device Settings

- 1. Open the Configuration workspace.
- 2. Click **Devices**.
- 3. If the devices are active, then click **Deactivate**.
- 4. Select the device to be edited.
- 5. Click **Edit**. The Device dialog opens.
- 6. (Optional) Edit the device properties in the **Device Display Names** section. For information about the properties, refer to the document: *Help System*.
- 7. (Optional) Click **Settings** to view and change additional device information. Use the Settings dialog to perform these tasks:
 - Click **Restore Defaults** to restore the default settings for the device.
 - Click **Test Device** to verify that the device is configured correctly and available for use. If the test is successful, then the Settings dialog closes.
- 8. Click **Test Device** to verify that the device is configured correctly and available for use. If the test is successful, then a green message is shown. Otherwise, a message indicates that the configuration is not valid and requires updates.

- 9. Click Save.
- 10. Select the **Activate** check box beside each device to be activated, and then click **Activate Devices**.

All of the selected devices are activated.

For information about configuring users and roles, refer to the document: *Laboratory Director Guide*.

About Projects and Root Directories

A root directory is a folder that contains one or more projects. It is the folder in which the software looks for project data. The predefined root directory is C:\SCIEX OS Data.

To make sure that project information is stored safely, create projects using SCIEX OS. Refer to the section: Add a Project.

Project data can be organized in subfolders. Create the subfolders with SCIEX OS. Refer to the section: Add a Subfolder.

Note: For workgroups administered by the Central Administrator Console (CAC) software, the configuration of the CAC software controls the ability to manage projects with SCIEX OS. If the **Use central settings for projects** option is selected in the CAC software, then the Projects page is read-only.

Add a Root Directory

A root directory is the folder in which one or more projects are stored.

Note: The software saves up to ten root directories.

- 1. Open the Configuration workspace.
- 2. Click Projects.
- 3. In the **Advanced** section, click **Create Root** (field.
- 4. Type the full path to the root directory folder. The folder is created.

Tip! Instead of typing the path, click **Browse**, and then select the folder in which the root directory will be created. Type "\" and the name of the root directory folder at the end of the path.

) beside the Current root directory

Tip! Alternatively, create a folder in File Explorer, and then browse to and select the folder.

Note: For SCIEX OS installations with a processing license, the root directory can be an Analyst software Analyst Data\Projects folder.

5. Click OK.

The new root directory becomes the root directory for the current project.

Remove a Root Directory

The software maintains a list of the last ten root directories that were used. The user can remove root directories from this list.

Note: The Current root directory cannot be deleted.

- 1. Open the Configuration workspace.
- 2. Click Projects.
- 3. In the **Advanced** section, click beside the **Current root directory** field. The Clear Root Directory dialog opens.
- 4. Select the folders to be removed from the list of root directories, and then click **OK**.

Specify a Secure Network Account

If projects are stored on a network resource, then an SNA can be specified, to make sure that all users of the workstation have the required access to the network resource.

- 1. Open the Configuration workspace.
- 2. Click Projects.
- 3. In the Advanced section, click Credentials for Secure Network Account.
- 4. Type the user name, password, and domain of the secure network account defined on the network resource.
- 5. Click OK.

Add a Project

The project stores acquisition methods, data, batches, processing methods, processing results, and so on. We recommend the use of separate project folders for each project.

Tip! Projects can also be created by clicking **Create Project** (**V**) on the Status panel.

Do not create projects or copy or paste files outside of SCIEX OS.

- 1. Open the Configuration workspace.
- 2. Click **Projects**.
- 3. Click **Create Project** () beside the **Current Project** field. The New Project dialog opens.
- 4. Type the project name.
- 5. Click OK.

Add a Subfolder

Within projects, data can be further organized in subfolders.

- 1. Open the Configuration workspace.
- 2. Click Projects.
- 3. Click Add Data Sub-Folders to any Project. The Add Data Sub-Folders dialog opens.
- 4. In the **SCIEX OS Project** field, select the project to which the subfolder is to be added.
- 5. Click Add a new data sub-folder () above the box in the Project Data Sub-Folders section.

The Data Sub-Folder Name dialog opens.

- 6. Type the name of the subfolder.
- 7. Click Save.
- 8. Close the Add Data Sub-Folders dialog.

Select Queue Options

The software processes the submitted samples in the list sequentially, running each sample with the selected acquisition method. After all of the samples have been acquired, the queue stops and the system goes to the Ready state. After the time set in the Instrument Idle Time field has elapsed, the system goes to the Standby state. In the Standby state, the LC pumps and column oven are turned off and some mass spectrometer voltages are turned off. The autosampler temperature control stays on to prevent sample degradation.

Only a user who has been assigned permissions to manage the queue can modify the length of time the queue runs after the last acquisition has finished, before it puts the instrument in the Standby state.

- 1. Open the Configuration workspace.
- 2. Click Queue.
- 3. Select the queue options as required. For descriptions of the options, refer to the document: *Help System*.
- 4. Click Save.

Select Laboratory Information Management System (LIMS) Settings

Use this feature to connect to a LIMS server. Users can import batch information from, as well as export results to, a LIMS.

Note: This procedure is not required for connection to a Watson LIMS.

- 1. Open the Configuration workspace.
- 2. Click LIMS Communication.
- 3. To communicate with a LIMS, type the URL of the LIMS server in the **LIMS Server** field and then select **Enable import from the specified LIMS server**.

Note: The customer IT department or the middleware provider is responsible for configuring the LIMS server. Contact them for the URL or location of the server.

4. Click Save.

Enable Full Screen Mode

Select this feature to use SCIEX OS as the primary application. Users cannot close the software or access other software programs.

- 1. Open the Configuration workspace.
- 2. Click General.
- 3. Under General, select the Enabled check box to enable Full Screen Mode.
- 4. Click Save.

Select Regional Settings

This feature applies the region and language settings selected in Control Panel. Only a period "." or comma "," can be used as a decimal separator. Digit grouping is not supported.

- 1. Open the Configuration workspace.
- 2. Click General.

- 3. Under **Regional Settings**, click **Apply**. The regional settings configured in the Windows operating system are applied to the software after the computer is started again.
- 4. Click Save.
- 5. Start the computer again.

Manage the Compound Libraries Import a LibraryView Software Package

- 1. Expand the **Compounds** list in the Manage pane.
- 2. Click All Compounds.
- 3. Click the Import icon.
- 4. Click LibraryView Package (*.Ibp) on the Library Importer dialog.
- 5. Navigate to the appropriate file on the Open dialog.
- 6. Select the file and then click **Open**.
- 7. Do one of the following on the Library Importer dialog:
 - Click All above the Compound column to import all of the compounds.
 - Click inside the appropriate row to import individual compounds.

Tip! To help locate compounds, use the **Search** field. As the search criteria is typed, the visible columns are searched and refreshed to show only the information that matches the specified criteria.

- 8. Do one of the following to add the compounds to a library:
 - Select the appropriate library from the Add to Compound Library list.
 - Type the name of the library in the Add to Compound Library list field.
- 9. Click Next.

Note: If the user cancels the import before all of the compounds have been copied to the database, then any compounds that have already been imported remain in the database. The software does not revert the database to the pre-import state.

- 10. Resolve any conflicts, if required.
- 11. Click Finish.

Import a Compound Database

1. Expand the **Compounds** list in the Manage pane.

- 2. Click All Compounds.
- 3. Click the **Import** icon.
- 4. Do one of the following on the Library Importer dialog:
 - Click DiscoveryQuant Compound Database (*.mdb).
 - Click Analyst Compound Database (*.mdb).
- 5. Navigate to the appropriate file on the Open dialog.
- 6. Select the file and then click **Open**.
- 7. Do one of the following on the Library Importer dialog:
 - Click All above the Compound column to import all of the compounds.
 - Click inside the appropriate row to import individual compounds.

Tip! To help locate compounds, use the **Search** field. As the search criteria is typed, the visible columns are searched and refreshed to show only the information that matches the specified criteria.

- 8. Do one of the following to add the compounds to a library:
 - Select the appropriate library from the Add to Compound Library list.
 - Type the name of the library in the Add to Compound Library list field.
- 9. Click Next.

Note: If the user cancels the import before all of the compounds have been copied to the database, then any compounds that have already been imported remain in the database. The software does not revert the database to the pre-import state.

- 10. Resolve any conflicts, if required.
- 11. Click Finish.

Import a Cliquid Software Package

- 1. Expand the **Compounds** list in the Manage pane.
- 2. Click All Compounds.
- 3. Click the **Import** icon.
- 4. Click Cliquid Package (*.clq) on the Library Importer dialog.
- 5. Navigate to the appropriate file on the Open dialog.
- 6. Select the file and then click **Open**.
- 7. Do one of the following on the Library Importer dialog:

- Click All above the Compound column to import all of the compounds.
- Click inside the appropriate row to import individual compounds.

Tip! To help locate compounds, use the **Search** field. As the search criteria is typed, the visible columns are searched and refreshed to show only the information that matches the specified criteria.

- 8. Do one of the following to add the compounds to a library:
 - Select the appropriate library from the Add to Compound Library list.
 - Type the name of the library in the Add to Compound Library list field.
- 9. Click Next.
- 10. Type the name of the mass spectrometer in the **Instrument Name** field, if required, on the Instrument Name dialog.
- 11. Click **OK**.

Note: If the user cancels the import before all of the compounds have been copied to the database, then any compounds that have already been imported remain in the database. The software does not revert the database to the pre-import state.

- 12. Resolve any conflicts, if required.
- 13. Click Finish.

Import an Excel File

- 1. Expand the **Compounds** list in the Manage pane.
- 2. Click All Compounds.
- 3. Click the **Import** icon.
- 4. Click **Excel file (*.xls)** on the Library Importer dialog.
- 5. Navigate to the appropriate file on the Open dialog.
- 6. Select the file and then click **Open**.
- 7. Select the appropriate Excel worksheet to import on the Library Importer dialog.
- 8. If the worksheet contains column headers, then select the check box beside **Selected Excel Worksheet has headers**.
- 9. Type the name of the mass spectrometer in the **Instrument Name** field, if required, on the Instrument Name dialog.
- 10. Select the appropriate heading for each column of information.

Tip! Compound:CompoundId and **Compound:Name** are mandatory selections. Select **---[not used]---** for information that is not required.

- 11. Click Next.
- 12. Do one of the following on the Library Importer dialog:
 - Click All above the Compound column to import all of the compounds.
 - Click inside the appropriate row to import individual compounds.

Tip! To help locate compounds, use the **Search** field. As the search criteria is typed, the visible columns are searched and refreshed to show only the information that matches the specified criteria.

- 13. Do one of the following to add the compounds to a library:
 - Select the appropriate library from the Add to Compound Library list.
 - Type the name of the library in the Add to Compound Library list field.
- 14. Click Next.

Note: If the user cancels the import before all of the compounds have been copied to the database, then any compounds that have already been imported remain in the database. The software does not revert the database to the pre-import state.

- 15. Resolve any conflicts, if required.
- 16. Click Finish.

Import a Library Database Snapshot

CAUTION: Potential Data Loss. Back up the current LibraryView software database before performing this procedure. The information in this package overwrites all of the existing data in the LibraryView software database. The Cancel option is not available after the import begins.

- 1. Expand the **Compounds** list in the Manage pane.
- 2. Click All Compounds.
- 3. Click the **Import** icon.
- 4. Click **Overwrite Database with Library Snapshot (*.lbp)** on the Library Importer dialog.
- 5. Click **Yes** on the Warning dialog.
- 6. Navigate to the appropriate file on the Open dialog.
- 7. Select the file and then click **Open**.

8. Click Finish.

Import a Library Package from a Third Party

- 1. Expand the **Compounds** list in the Manage pane.
- 2. Click All Compounds.
- 3. Click the **Import** icon.
- 4. Click Third Party Library Package (*.tplp) on the Library Importer dialog.
- 5. Navigate to the appropriate file on the Open dialog.
- 6. Select the file and then click **Open**.
- 7. Do one of the following on the Library Importer dialog:
 - Click All above the Compound column to import all of the compounds.
 - Click inside the appropriate row to import individual compounds.

Tip! To help locate compounds, use the **Search** field. As the search criteria is typed, the visible columns are searched and refreshed to show only the information that matches the specified criteria.

- 8. Do one of the following to add the compounds to a library:
 - Select the appropriate library from the Add to Compound Library list.
 - Type the name of the library in the Add to Compound Library list field.
- 9. Click Next.

Note: If the user cancels the import before all of the compounds have been copied to the database, then any compounds that have already been imported remain in the database. The software does not revert the database to the pre-import state.

- 10. Resolve any conflicts, if required.
- 11. Click Finish.

Install a Licensed LibraryView Software Package

Note: The LibraryView software must be installed.

Note: Internet access is required to obtain the LibraryView software license. If a computer does not have Internet access, then make a copy of the generated computer ID. On a computer with Internet access, go to the licensing page of the SCIEX website and then follow the instructions to obtain the license.

A licensed library can be installed from a DVD or from a zip application file downloaded from the SCIEX website. The application file can include compound names, compound transition information, and compound library spectra.

- 1. Log on to the computer as a Windows user with administrator privileges.
- 2. Do one of the following:
 - If the library is being installed from a DVD, then load the DVD in the DVD drive and continue with step 5.
 - If the library is being installed from a downloaded file, then continue with step 3.
- 3. Download the required zip file from the SCIEX website.

Tip! To prevent potential installation issues, save the file to a location other than the computer desktop.

- 4. After the download is complete, right-click the downloaded file and then click **Extract All**.
- 5. Browse to the extracted files or the DVD and then double-click **Library.exe**.

Tip! If the User Account Control dialog opens, then click Yes.

Tip! If the LibraryView Setup (Not Responding) message dialog opens, then close the message dialog, right-click the **Library.exe** file, and select the **Run as administrator** option to start the installation again.

- 6. Click **Software Activation** on the LibraryViewPackages Feature Unavailable dialog. The LibraryViewPackages Activation dialog opens.
- Type the license key, exactly as shown, in the appropriate field. If a license key is not available, then contact sciex.com/request-support.
- 8. Click **Generate Computer ID**. A unique identifier is created for the workstation.
- 9. Click Copy ID to Clipboard.
- 10. Follow the instructions to obtain the license.

After the required information is submitted, a license file is sent to all of the e-mail addresses provided.

- 11. Close the browser window.
- 12. When the e-mail containing the license file is received, copy the license file to the workstation desktop.
- 13. Click Install License File on the LibraryViewPackages Activation dialog.
- 14. Browse to and then select the license file on the Select the new license file to be installed dialog.

15. Click Open.

Both the Select the new license file to be installed and the LibraryViewPackage Activation dialogs close.

- 16. Do one of the following:
 - Click **All** above the **Compound** column on the Library Importer dialog to import all of the compounds.
 - Click inside the appropriate row on the Library Importer dialog to import individual compounds.

Tip! To help locate compounds, use the **Search** field. As the search criteria is typed, the visible columns are searched and refreshed to show only the information that matches the criteria specified.

17. Click Next.

Note: If the user cancels the import before all of the compounds have been copied to the database, then any compounds that have already been imported remain in the database. The software does not revert the database to the pre-import state.

- 18. Resolve any conflicts, if required.
- 19. Click Finish.

Compound Conflicts

When installing a library containing a group of compounds or installing individual compounds, the software searches the database for compounds with the same name or formula as a compound in the package. If compounds are found, then the software flags the corresponding compounds in the package and waits for user input to continue.

Users have the option to:

- Merge the compound information. New spectra, transitions, and retention times from the compound in the package are added to the compound information stored in the database.
- Overwrite the compound information. Compound information from the package replaces the compound information stored in the database.
- Keep compound information. Compound information in the database is kept and the compound information from the package is discarded.

Conflict information is available to help the user make the correct choice.

View Compound Conflicts

1. Click **Resolve** beside the compound on the Library Importer dialog to view the details of the conflict.

- 2. Do one of the following:
 - Click **Keep Original** to keep the existing compound information and discard the new information.
 - Click **Use New** to replace the existing compound information with the new information.
- 3. Repeat steps 1 and 2 for each compound.
- 4. After all of the conflicts are resolved, click **Finish**.

Merge Compounds

- 1. On the Library Importer dialog, do one of the following:
 - Click **Merge** to merge new spectra, transitions, and retention times from individual compounds in the import package with the corresponding compound information stored in the database.
 - Click **Merge All** to merge new spectra, transitions, and retention times from all of the compounds in the import package with the corresponding compound information stored in the database.
- 2. After all of the conflicts are resolved, click **Finish**.

Overwrite Compounds

- 1. Do one of the following on the Library Importer dialog:
 - Click **Overwrite All** to overwrite all of the compound information stored in the database with the corresponding compound information from the import package.
 - Click **Resolve** beside the appropriate compound and then click **Use New** to overwrite the compound information stored in the database with the corresponding compound information from the import package.
- 2. Click **Finish** after all of the conflicts are resolved.

Keep Original Compounds

- 1. Do one of the following on the Library Importer dialog:
 - Click **Keep All Original** to keep all of the compound information stored in the database and discard the compound information from the import package.
 - Click Keep Original beside the appropriate compound to keep the individual compound information stored in the database and discard the compound information from the import package.
- 2. Click **Finish** after all of the conflicts are resolved.

Add a Compound

Note: Compounds can also be added to a library using the Edit Library option.

- 1. Expand the **Compounds** list in the Manage pane.
- 2. Click All Compounds.
- 3. Click the Add icon.

Note: The compound name is mandatory. All of the other information is optional.

- 4. Type the appropriate information in the fields on the Details tab.
- 5. Click Save.

Add a Mass Spectrum to a Compound

- 1. Expand the **Compounds** list in the Manage pane.
- 2. Click All Compounds.
- 3. Double-click the appropriate compound.
- 4. Click the **MS Spectra** tab.
- 5. Click the Edit Mode icon.
- 6. Click the **Add Spectra** icon.
- 7. Click **Open** *.wiff file on the Add Mass Spectrum from *.wiff file to Compound dialog.
- 8. Browse to and then select the appropriate wiff or wiff2 file on the Open dialog.
- 9. Click **Open**.
- 10. Do one of the following to add the compounds to a library:
 - For IDA data, expand the sample and then select the appropriate compound in the navigation pane on the left.
 - For EMS, MRM, and looped data, select the appropriate sample.
- 11. Do one of the following to add spectrum to the compound:
 - For IDA data, click **Add Spectrum** in the Acquired Spectrum pane.
 - For EMS, MRM, and looped data, double-click the TIC and then click **Add Spectrum** in the Acquired Spectrum pane.
- 12. Repeat steps 7 through 11 for each spectrum to be added.
- 13. Click Save.
- 14. Click **Save** on the MS Spectra tab.

Operating Instructions—User Workflows

Analysts

Task	Refer to
View the main screen and status panel to check the system status.	About the Home Page and About the Status Panel.
Create and submit a batch either using a Microsoft Excel spreadsheet or LIMS, or manually. LC and MS methods must be locked by Method Developers before batches are created and submitted by Analysts.	Batch Workspace.
View and manage samples in the queue.	Queue Workspace.
Process and review data in Results Tables.	Analytics Workspace.
Explore data.	Explorer Workspace.

Method Developers

Task	Refer to
Configure the system.	Operating Instructions—Device Configuration.
	 Define the Default Processing Parameters for the Project.
	Customize the Results Table.
Tune the mass spectrometer.	MS Tune Workspace.
Configure the liquid chromatography (LC) devices.	The documentation for the LC device.
Create LC methods.	Create an LC Method.
Echo [®] MS Systems: Create acoustic ejection (AE) methods.	Create an AE Method.

Operating Instructions—User Workflows

Task	Refer to
Create mass spectrometer (MS) methods.	MS Method Workspace.
Develop processing methods.	Create a Processing Method.

Administrators

Task	Refer to
Set the Windows file permissions.	Laboratory Director Guide.
Configure the LIMS.	Select Laboratory Information Management System (LIMS) Settings.
Add users to the software and assign roles.	Laboratory Director Guide.
Archive logs.	Archive Logs.

Reviewers

Task	Refer to
Review processed results.	Analytics Workspace.
Explore data.	Explorer Workspace.
Review logs.	View Logs.
Operating Instructions—Acquisition 5

Use the following workspaces to perform acquisition tasks:

- MS Method Workspace: Create and manage MS methods
- (Not applicable if an Echo[®] MS Module is active) LC Method Workspace: Create and manage LC methods
- (If an Echo[®] MS Module is active) AE Method Workspace: Create and manage AE methods
- Batch Workspace: Create batches and submit them to the queue
- Queue Workspace: Manage samples in the queue

Note: To avoid performance issues or data corruption, do not do computer maintenance procedures, such as defragmentation or disk cleanup, virus scans, or Windows Updates, during sample acquisition.

MS Method Workspace

Use this workspace to create and manage mass spectrometer (MS) methods.

Multiple methods can be open in the MS Method workspace. Using the **Views** menu, the user can change the arrangement of the method windows to tabbed, vertical tiled, horizontal tiled, or floating views. In floating view, windows can be resized, maximized, or minimized, moved outside of the SCIEX OS window, and moved to a different monitor.

The title bar of the method window contains the method and project names. In the tiled and floating views, the title bar of the active method is blue and the title bars of the other methods are gray. In the tabbed view, the tab for the active method is white, and the tabs for the other methods are blue.

Access to features in this workspace is controlled by the role assigned to the user. Refer to the document: *Laboratory Director Guide*.

Create an MS Method

Use this procedure to create the following types of MS methods: MRM (including Scheduled MRM (sMRM) and Scout Triggered MRM (stMRM) algorithm methods), Q1, Q1MI, Q3, Q3MI, Neutral Loss, Precursor Ion, Product Ion, ER, EMS, EPI, MS³, and IDA.

Note: Linear ion trap (LIT) scan modes (ER, EMS, EPI, MS³) are only supported on SCIEX 7500 systems with the QTRAP license installed.

Note: IDA methods are only supported on SCIEX 7500 systems.

Note: Echo[®] MS systems: MRM methods are recommended for acoustic ejection applications. The sMRM and stMRM algorithms are not supported.

The new method uses the default settings for the mass spectrometer. Refer to Work With Default Settings.

Tip! For information on creating MS methods using the **Guided MRM** option, refer to the section: Create an MRM Method Using Guided MRM.

Note: Make sure that the correct project name is selected in the status panel.

- 1. Open the MS Method workspace.
- 2. Click the down arrow on the **New** button, and then select a scan type from the list. The scan types available vary depending on the mass spectrometer. Refer to the section: Scan Techniques.

Figure 5-1 MS Methods Lists (SCIEX 7500 System with the QTRAP License Installed)

3. Type values in the fields, as required. For a description of the parameters, refer to the document: *Help System*.

CAUTION: Potential System Damage. (Echo[®] MS systems) Set the lon source gas 1 parameter to at least 90 psi to avoid flooding the well plate.

- 4. (Optional) Import masses into the Mass Table.
 - Click **Import compounds from a file**. In the Open dialog, browse to and select the csv or txt file to import, and then click **Open**.

Note: For MRM methods, click **Import** to select the **Import compounds from a file** option.

 MRM methods: Click Import > Update retention time from a processing method. In the Open dialog, browse to and select the processing method that contains the retention times to be imported, and then click Open.

- MRM methods: Import > Import compounds from a library. Select to import from a library that has transition table information or MS spectra. Refer to the document: *Help* System.
- 5. (Optional) Click **Advanced > Show advanced parameters** to show and edit the resolution parameters, **Settling time**, **Pause time**, **Step size**, and **Q0 dissociation**.

Note: Q0 dissociation is only shown for SCIEX 7500 systems.

- 6. (Optional) Click **Options** > **Ramp** to gradually increase the value of a parameter in the method.
- 7. (Optional) Click **Options > Apply ionization scheduling** to implement the scheduled ionization feature.
- 8. (Optional) Run the method. Refer to the section: Run an MS Method Manually.
- 9. View the real-time data in the Data Acquisition panel.

Tip! Click the top of the Data Acquisition panel and then drag it up or down to resize the contents. Refer to the section: Data Acquisition Panel.

10. (Optional) To view the data in the Explorer workspace, click Open data exploration to view

real time data (A) in the Data Acquisition panel. Refer to the document: *Help System*. Real-time acquisition is indicated in the Explore pane by the words **Acquiring**, **Finished**, or **Aborted** in the sample title.

Figure 5-2 Real-time Acquisition—Acquiring

- 11. Do one of the following to save the MS method:
 - Click **Save** > **Save** to save the method in the same project with the same name.
 - Click Save > Save As to save the method with a new name or in a different project.
 - Click **Save** > **Lock Method** to lock the method if it is ready for routine analysis.

Note: Lock the method to prevent unauthorized users from editing it. Only users with the **Lock/Unlock methods** permission can edit locked methods. Other users can only submit them.

The Save As MS Method dialog opens.

- 12. Type a name in the **File Name** field.
- 13. Click Save.

Note: Optimizing the MS method requires the manual, iterative adjusting of parameters, acquiring data, and then observing the effect of the adjustment on the signal.

Tips for Importing Compounds

- Tips for Importing Compounds from a file:
 - The source csv or txt file must be formatted as follows:
 - The source file should not contain column headers.
 - The number and order of columns in the source file must match the number and order of columns in the Mass Table in the MS method at the time of import.
 - Only valid values in the source file are imported into the corresponding cells in the Mass Table. Otherwise, the affected cells will either be indicated with a validation icon to show the location of the invalid values or the default value of that cell will persist.
 - The source csv or txt file must not be open at the time of import.
 - Import of dwell times in Scheduled MRM (sMRM) and Scout Triggered MRM (stMRM), RT mode algorithm methods is handled differently depending on whether the Edit dwell time check box for that transition is selected or cleared.

If **Edit dwell time** is selected, then the dwell time value specified by the user in the source file is imported if it is between the minimum and maximum dwell times specified by the user in the MS method. If the value is outside of this range, then the imported value is replaced by either the minimum dwell time or the maximum dwell time, whichever is closest to the imported value.

If **Edit dwell time** is cleared, then the dwell time value in the source file is replaced with a dwell time calculated based on the existing and imported method parameters, including method duration, target cycle time, concurrency, retention time, and retention time tolerance.

Note: For stMRM algorithm methods in group mode, dwell times are edited manually by the user. Therefore, they are imported from the source file if they are between the minimum and maximum.

- Tips for importing compounds from a transition table:
 - The installed library contain MRM transitions and compound-dependent parameters for at least one of the compounds in the transitions table. The following image shows a transitions table in the LibraryView software.

Note: Transitions and compound-dependent parameters in the library transitions tables can come from the installed library or they can be manually created and maintained by the user.

2									
	Views:								
Manage	Amantadi	ne	Details	MS Spectra	1				
▼ LIBRARIES	Amantadi	ne lier							
♥ COMPOUNDS ☆ All Compounds ☆ Favorites ⓓ Trash ► CLASSES	CAS Inc Form Molecular Weig Monoisotopic M. Librar Class Synony Additional Info Commen	lex 768-94-5 ula C10H17N pht 151.2490 ass 151.1361 les 6500 CL ses (virustation ts h Thresholds	5 0 Q. C. (antipar	kinsonian)					
	▼ Retention Tim Default LC ▼ Transitions ▼ QTRAP 650	es Model Nam 0 :	e Retenti	on Time					
	✓ Retention Tim Default LC ✓ Transitions ✓ QTRAP 650 Q1	Model Nam	e Retenti	on Time	EP	FP	CXP	Polarity	
	▼ Retention Tim Default LC ▼ Transitions ▼ QTRAP 650 Q1 152.10 152.00	0 : Q3 135.00	e Retenti CE 20.00	DP 80.00	EP 10.00	FP 0.00	CXP 4.00	Polarity	
	▼ Retention Tim Default LC ▼ Transitions ▼ QTRAP 650 Q1 152.10 152.00	0 : Q3 135.00 77.00	CE 20.00 50.00	DP 80.00 80.00	EP 10.00 10.00	FP 0.00 0.00	CXP 4.00 4.00	Polarity Positive Positive	
	▼ Retention Tim Default LC ▼ Transitions ▼ QTRAP 650 Q1 152.10 152.10 152.10	es Model Nam 0: 0: 135.00 77.00 79.00	CE 20.00 50.00 50.00 25.00	OP 80.00 80.00 80.00	EP 10.00 10.00 10.00	FP 0.00 0.00 0.00	CXP 4.00 4.00 4.00	Positive Positive Positive	

Figure 5-3 Transitions Table in the LibraryView Software

Create an IDA Method

Note: IDA methods are only supported on SCIEX 7500 systems.

- 1. Open the MS Method workspace.
- 2. Click New > IDA
- 3. Type the method duration in the **Method duration** field.
- 4. Set the source and gas parameters. For description of the parameters used in the IDA method, refer to the document: *Help System*.
- 5. In the **Survey** field, select one of the following experiment types:

- MRM
- Neutral Loss
- Precursor Ion
- Q3
- EMS
- 6. In the **IDA Criteria** field, select a workflow.

The list of workflows varies depending on the survey scan selected.

Note: If the user changes the survey scan, the common IDA criteria and inputted values will be carried over.

- 7. Set the IDA criteria.
- 8. In the **Dependent** field, select one of the following experiment types:
 - EPI
 - Product Ion
 - Add Second IDA Criteria (MS3): Select to add a second level IDA experiment, an MS³ dependent scan, and second level criteria. The EPI scan will change to survey scan.
- 9. Do one of the following to save the MS method:
 - Click **Save** > **Save** to save the method in the same project with the same name.
 - Click **Save > Save As** to save the method with a new name or in a different project.
 - Click **Save** > **Lock Method** to lock the method if it is ready for routine analysis.

Note: Lock the method to prevent unauthorized users from editing it. Only users with the **Lock/Unlock methods** permission can edit locked methods. Other users can only submit them.

The Save As MS Method dialog opens.

- 10. Type a name in the **File Name** field.
- 11. Click Save.

Create an MRM Method Using Guided MRM

Use syringe infusion, Tee infusion, or, if an Echo[®] MS system is used, acoustic infusion, when using Guided MRM to optimize or create a new MRM acquisition method.

Note: Echo[®] MS systems: Because the peaks are narrow, we recommend that the number of transitions be minimized. From four to a maximum of six transitions is recommended.

Operating Instructions—Acquisition

Use syringe infusion or Tee infusion when using Guided MRM to optimize or create a new MRM acquisition method.

Use the **Guided** option if greater control over the start and stop voltages is required.

- 1. Open the MS Method workspace.
- Click New > Guided Optimization > MRM Infusion. The Preparation page opens.
- 3. Select the mode:
 - Guided: For greater control over the start and stop voltages.
 - **Automatic**: To allow the software to automatically select the voltage start and stop values.
- 4. Select a **Polarity**.
- 5. To use known transitions, do this:
 - a. Click Use known transitions.
 - b. Type the **Compound ID**, **Q1 mass (Da)** and **Q3 Mass (Da)** in the table for each compound.
- 6. To use unknown transitions, do this:
 - a. Click Find transitions automatically.
 - b. Specify the **Compound Name**, **Charge**, **Precursor Ion**, and **Number of Fragments to Use** in the table for each compound.
- 7. Click **Continue**.
 - The Set Initial Conditions page opens.
- 8. If required, adjust the initial ion source and Q1 parameters.
- 9. If processing does not occur automatically, then click **Start**.
- When the spray is stable, click Next. The system automatically optimizes the Declustering Potential, Collision Energy, and Collision Cell Exit Potential parameters, and, if Unknown transitions is selected, identifies the product ions.
- 11. (Automatic mode) Wait until all of the product ions are identified, all of the parameters are optimized, and the Report page is shown. Then go to step 16.
- 12. On the Optimize Declustering Potential page, do the following:
 - a. Type values in the Start, Stop, and Step fields.
 - b. Click Start.

Note: If required, adjust the ramp parameters, and then click **Ramp** to perform the optimization again.

- c. Click **Next** after the optimization has completed.
- 13. On the Determine the Product lons page, do the following:
 - a. If required, adjust the **Start**, **Stop**, and **Step** fields for the CE ramp.
 - b. If required, type values in the Start Mass (Da) and Stop Mass (Da) fields.

Note: If required, adjust the ramp parameters, and then click **Ramp** to perform the optimization again.

- c. Click **Next** after the optimization has completed.
- 14. On the Optimize Collision Energy page, do the following:
 - a. Type values in the **Start**, **Stop**, and **Step** fields.
 - b. Click Start.

Note: If required, adjust the ramp parameters, and then click **Ramp** to perform the optimization again.

- c. Click **Next** after the optimization has completed.
- 15. On the Optimize Collision Cell Exit Potential page, do the following:
 - a. Type values in the Start, Stop, and Step fields.
 - b. Click Ramp.

Note: If required, adjust the ramp parameters, and then click **Ramp** to perform the optimization again.

c. Click **Next** after the optimization has completed.

The Report page is shown.

- 16. (Optional) Save the report by following these steps:
 - a. On the Report page, click Save report as
 - b. Navigate to the folder where the report will to be saved, type a **File name**, and then click **Save**.

Note: The software also saves the corresponding wiff data files and optimization report in the same folder.

- 17. Click **Continue** to open the optimized method in the MS Method workspace.
- 18. Type the required method duration time in the **Method Duration** field.

- 19. Do one of the following to save the MS method:
 - Click **Save** > **Save** to save the method in the same project with the same name.
 - Click **Save > Save As** to save the method with a new name or in a different project.
 - Click **Save** > **Lock Method** to lock the method if it is ready for routine analysis.

Note: Lock the method to prevent unauthorized users from editing it. Only users with the **Lock/Unlock methods** permission can edit locked methods. Other users can only submit them.

The Save As MS Method dialog opens.

- 20. Type a name in the **File Name** field.
- 21. Click Save.

Create an MRM Method Using FIA

- 1. Open the MS Method workspace.
- Click New > Guided Optimization > MRM FIA. The Set Initial Acquisition Values page opens.
- 3. Select the **LC Method** or click **(D)** to view the selected LC Method in the current project.
- 4. Specify the injection volume.
- 5. Type the required method duration time in the Method Duration field.
- 6. Select the Rack Type, Rack Position, Plate Type, and Plate Position.
- 7. Select a Polarity.
- In the table, type the Compound ID, Q1 mass (Da), Q3 Mass (Da), CE (V), CXP (V), Dwell time (ms), and Vial Position for each compound. For a description of the parameters, refer to the document: *Help System*.

Note: The table can hold a maximum of 10 compounds.

- Click Next. The Set Initial LC-MS Conditions page is shown.
- 10. Select the **Compound ID** in the **Initial conditions with** field. Then adjust the source and gas parameters and MRM parameters. For a description of the parameters, refer to the document: *Help System*.
- 11. If processing does not occur automatically, then click Start.
- 12. Click **Next**. The Optimize Parameters page is shown.

- 13. Select the step size in the **Determine step size using** field. Refer to the document: *Help System*.
- 14. Specify whether to optimize using intensity or signal-to-noise in the **Optimize using** field.
- 15. In the **Initial Parameter Values** table, select the parameters to be optimized.
- 16. For each parameter to be optimized, define the steps in the **Start**, **Stop**, and **Step** or **Discrete steps** fields.
- 17. Select the number of replications to be performed for each parameter step in the **Replicate injection for each step** field.
- 18. Click Start.
- 19. Click **Next** after the optimization has completed. The Review Report page is shown.Refer to the document: *Help System*.
- 20. Click **Open in MS Method Editor** to open the optimized method in the MS Method Workspace.
- 21. Type the required method duration time in the **Method Duration** field.
- 22. Do one of the following to save the MS method:
 - Click **Save** > **Save** to save the method in the same project with the same name.
 - Click **Save > Save As** to save the method with a new name or in a different project.
 - Click **Save > Lock Method** to lock the method if it is ready for routine analysis.

Note: Lock the method to prevent unauthorized users from editing it. Only users with the **Lock/Unlock methods** permission can edit locked methods. Other users can only submit them.

The Save As MS Method dialog opens.

- 23. Type a name in the **File Name** field.
- 24. Click Save.

Create an MS³ Method Using Infusion

Note: Linear ion trap (LIT) scan modes (ER, EMS, EPI, MS³) are only supported on SCIEX 7500 systems with the QTRAP license installed.

- 1. Open the MS Method workspace.
- Click New > Guided Optimization > MS³ Infusion.
 The Preparation page is shown.
- 3. Set the **Basic**, **Enhanced Resolution**, **Enhanced Product Ion**, **Multiple Reaction Monitoring**, and **MS**³ parameters.Refer to the document: *Help System*.

4. Click Next.

The Initial Conditions & Optimization page is shown.

5. Set the source and gas parameters. For a description of the parameters, refer to the document: *Help System*.

6. Click Start.

The system automatically determines the Q1 ions and product ions, and optimizes collision energies and AF2 energies.

Note: The system determines a single Q1 ion at a time.

- 7. Wait until all of the product ions are identified, all of the parameters are optimized, and the Report page is shown.
- 8. Click **Open in MS Method Editor** to open the optimized method in the MS Method workspace.
- 9. Type the required method duration time in the **Method Duration** field.
- 10. Do one of the following to save the MS method:
 - Click **Save** > **Save** to save the method in the same project with the same name.
 - Click **Save > Save As** to save the method with a new name or in a different project.
 - Click **Save** > **Lock Method** to lock the method if it is ready for routine analysis.

Note: Lock the method to prevent unauthorized users from editing it. Only users with the **Lock/Unlock methods** permission can edit locked methods. Other users can only submit them.

The Save As MS Method dialog opens.

- 11. Type a name in the **File Name** field.
- 12. Click Save.

Create an sMRM Algorithm Method

Prerequisite Procedures

- Create an MS method that contains an MRM experiment. Refer to the following procedures:
 - Create an MS Method
 - Create an MRM Method Using Guided MRM

Note: Echo[®] MS systems: The Scheduled MRM (sMRM) algorithm is not supported.

- 1. Open an MS method that contains an MRM experiment by following these steps:
 - a. Click Open.
 - b. Select the MS method.
 - c. Click Open.
- 2. In the **MRM Mode** field, select **Scheduled MRM**. The Scheduled MRM (sMRM) algorithm fields are shown.
- 3. Set **Target Cycle Time** to a value appropriate for the peak width.
- 4. Set the **Retention time (min)** for each compound to the expected retention time, based on the LC method conditions.
- 5. Set the **Retention time tolerance (+/-sec)** to the appropriate value, based on the peak profile.
- 6. (Optional) To apply sMRM algorithm triggering, select **Apply sMRM triggering** and update the **Mass Table** section. Refer to the document: *Help System*.
- 7. (Optional) Update the advanced parameters by following these steps:
 - a. Click Advanced > Show advanced parameters.
 - b. Adjust **Minimum Dwell Time**, **Maximum Dwell Time**, **Settling time**, and **Pause time**, as required.
 - c. (Optional) In the mass table, adjust **Q1 resolution** or **Q3 resolution**, or both.

Figure 5-4 Advanced Parameters

's Untitled 1 (Default)						2
						H• 8 =•
Method Overview 4	Method duration	1 🛟 min	Target cycle time	1000 🗘 ms	sMRM Summary	
Device: Triple Quad 7500 Ion Source: MICRO 50-200 uL	Minimum dwell time	3 🔹 mi	Maximum dwell time	250 🗘 ma		
Add Experiment Y						
SMRM	* Source and Gas Parar	meters				
0 min + 1 min	Ion source gas 1	35 🗘 psi	Curtain gas	40 🗘 psi	Source temperature	300 🗘 *C
	Ion source gas 2	70 🗘 psi	CAD gas	9	Column temperature	o : *c
	* Experiment MRM	¥				
	Polarity	Positive ¥	Spray voltage	4500 C V	Dynamic background	
					subtraction	_
	Advanced Experiment Set	lings				
	Settling time	0 🛟 ms	Pouse time	5 🗘 ms		
	Mass Table Instant	MDM Mode Schedu	ded MEM	Analy shiPM trippering	O0 dimension	tion County W
				C sthill more address	qv +111011	
	Group Compo	sund Primary Trigger	Retention Retention	Q1 Q3	Edit Dwell	EP CE COP Q1 Q3
	1 (1000)	trigger threshold (cpr	0.00 bine (min) time toterar	nce (+/- s) mass (Da) mass	(Da) dwell time time (ms)	(V) (V) (V) resolution resolution
	· · · ·			country room		1000 3000 1300 Grie Grie
						,

8. Click **sMRM Summary** to view a graphical representation of the sMRM method. Click **Close** to close it.

Figure 5-5 (s)MRM Plots Dialog

Note: Multiple (s)MRM Plots dialogs can be open at the same time, one for each MS method that is open in the MS Method workspace.

- 9. Do one of the following to save the MS method:
 - Click **Save** > **Save** to save the method in the same project with the same name.
 - Click Save > Save As to save the method with a new name or in a different project.
 - Click **Save** > **Lock Method** to lock the method if it is ready for routine analysis.

Note: Lock the method to prevent unauthorized users from editing it. Only users with the **Lock/Unlock methods** permission can edit locked methods. Other users can only submit them.

The Save As MS Method dialog opens.

- 10. Type a name in the **File Name** field.
- 11. Click Save.
- 12. Run the MS method with appropriate LC method, and adjust the parameters to optimize performance. Refer to the section: Run an MS Method Manually.

Create an stMRM Algorithm Method

Prerequisite Procedures

- Create an MS method that contains an MRM experiment. Refer to the following procedures:
 - Create an MS Method
 - Create an MRM Method Using Guided MRM

Note: Echo[®] MS systems: The Scout Triggered MRM (stMRM) algorithm is not supported.

- 1. Open an MS method that contains an MRM experiment by following these steps:
 - a. Click **Open**.
 - b. Select the MS method.
 - c. Click Open.
- 2. In the **MRM Mode** field, select **Scout triggered MRM RT** or **Scout triggered MRM Group** The Scout Triggered MRM (stMRM) algorithm fields are shown.
- 3. Set **Target Cycle Time** to a value appropriate for the peak width.
- 4. In the Mass Table, for each marker transition, select the **Trigger** check box and specify the **Trigger threshold**.
- 5. **Scout triggered MRM RT** mode: Specify retention times that indicate the elution order and then set an **RT overlap**. Refer to the section: Retention Time Mode.
- 6. **Scout triggered MRM Group** mode: Assign each transition to a super group. The marker transition and all of its dependent transitions must be in the same super group. Refer to the section: Group Mode.
- 7. (Optional) Update the advanced parameters by following these steps:
 - a. Click Advanced > Show advanced parameters.
 - b. Adjust **Minimum Dwell Time**, **Maximum Dwell Time**, **Settling time**, and **Pause time**, as required.
 - c. (Optional) In the mass table, adjust **Q1 resolution** or **Q3 resolution**, or both.
- 8. Click **sMRM Summary** to view a graphical representation of the sMRM method. Click **Close** to close it.

Figure 5-6 (s)MRM Plots Dialog

Note: Multiple (s)MRM Plots dialogs can be open at the same time, one for each MS method that is open in the MS Method workspace.

- 9. Do one of the following to save the MS method:
 - Click **Save** > **Save** to save the method in the same project with the same name.
 - Click **Save > Save As** to save the method with a new name or in a different project.
 - Click Save > Lock Method to lock the method if it is ready for routine analysis.

Note: Lock the method to prevent unauthorized users from editing it. Only users with the **Lock/Unlock methods** permission can edit locked methods. Other users can only submit them.

The Save As MS Method dialog opens.

- 10. Type a name in the **File Name** field.
- 11. Click Save.
- 12. Run the MS method with appropriate LC method, and adjust the parameters to optimize performance. Refer to the section: Run an MS Method Manually.

Create a Method with Multiple Experiments

Prerequisite Procedures

- Create an MS method. Refer to the following procedures:
 - Create an MS Method
 - Create an MRM Method Using Guided MRM
- 1. Open the MS method to which an experiment will be added by following these steps:
 - a. Click Open.
 - b. Select the MS method.
 - c. Click Open.
- 2. In the Method Overview pane, click **Add Experiment**, and then the scan type of the experiment to be added.

Figure 5-7 Add Experiment Menu

- 3. Set the experiment parameters. For a description of the parameters, refer to the document: *Help System*.
- 4. Repeat step 2 and step 3 for each experiment to be added.
- 5. (Optional) Click **Options > Apply experiment scheduling** to configure a **Start run time** and **Stop run time** for each experiment.

Note: Experiment scheduling is not available for Scheduled MRM (sMRM) and Scout Triggered MRM (stMRM) algorithm experiments. Therefore, the following restrictions apply:

- If experiment scheduling is applied to multiple MRM experiments, then they cannot be converted to sMRM or stMRM experiments. Nor can sMRM or stMRM experiments be added to an MRM method with the experiment scheduling feature enabled.
- Experiment scheduling cannot be applied to an MS Method that contains sMRM or stMRM experiments.
- 6. Do one of the following to save the MS method:
 - Click **Save** > **Save** to save the method in the same project with the same name.
 - Click Save > Save As to save the method with a new name or in a different project.
 - Click **Save** > **Lock Method** to lock the method if it is ready for routine analysis.

Note: Lock the method to prevent unauthorized users from editing it. Only users with the **Lock/Unlock methods** permission can edit locked methods. Other users can only submit them.

The Save As MS Method dialog opens.

- 7. Type a name in the **File Name** field.
- 8. Click Save.

For scan types other than MRM scan types, optimizing the MS method requires the manual, iterative adjusting of parameters, acquiring data, and then observing the effect of the adjustment on the signal.

Open an MS Method

Use this procedure to open an MS method created with SCIEX OS. To open methods created with the Analyst software, refer to the section: Convert an Analyst Software Method.

SCIEX OS can open an MS method created for a mass spectrometer that is different than the active mass spectrometer. For example, it can convert a method created for a SCIEX Triple Quad 5500+ system for use with a SCIEX Triple Quad 4500 system. To do so, make sure that the MS method is in the current project. While opening the MS method, the software adjusts the parameters to be compatible with the active device.

Note: The software cannot convert a method created for a X500 QTOF or ZenoTOF system for use with SCIEX Triple Quad or QTRAP systems.

- 1. Open the MS Method workspace.
- 2. Click **Open**. The Open MS Method dialog opens. It contains the list of MS methods in the current project.
- 3. (Optional) If the method to be opened is not in the current project, then select the project that contains the method to be opened.
- 4. Select the MS method to open, and then click **Open**.

Tip! To select multiple methods, use the Shift or Ctrl key.

If the device in the MS method does not match the active device, then the Convert MS Method dialog opens. Click **OK** to convert the MS method for the active device. After the conversion is complete, click **OK**. Review the MS method carefully before using it.

Note: If the MS method is being converted from a different mass spectrometer, then the MS method name is Untitled.

Convert an Analyst Software Method

MS methods created in the Analyst software can be converted for use in SCIEX OS. If the device in the Analyst software method does not match the active device in SCIEX OS, then the method parameters are adjusted to be compatible with the active device.

Note: SCIEX OS cannot open methods created for QTRAP systems.

Note: Make sure that the correct project name is selected in the status panel.

- 1. Open the MS Method workspace.
- 2. Click **Open > Convert file**.
- Browse to and select the method to be converted, and then click **Open**.
 The software converts the method, reporting any issues resulting from differences in the devices and method file format. The method opens in the MS Method workspace.
- 4. Review the MS method and correct any issues.
- 5. Do one of the following to save the MS method:
 - Click **Save** > **Save** to save the method in the same project with the same name.
 - Click **Save > Save As** to save the method with a new name or in a different project.
 - Click **Save** > **Lock Method** to lock the method if it is ready for routine analysis.

Note: Lock the method to prevent unauthorized users from editing it. Only users with the **Lock/Unlock methods** permission can edit locked methods. Other users can only submit them.

The Save As MS Method dialog opens.

- 6. Type a name in the **File Name** field.
- 7. Click Save.

For scan types other than MRM, optimizing the MS method involves manual, iterative adjustment of parameters, acquisition of data, and then observation of the effect of the adjustment on the signal.

Run an MS Method Manually

Prerequisite Procedures

• In the MS Method workspace, create an MS method or open an existing method. Refer to the section: MS Method Workspace or Open an MS Method.

Use this procedure to run the active method in the MS Method workspace.

- 1. Click the down arrow on the **Start** button in the Data Acquisition panel and then click one of the following:
 - Start: This option runs the MS method without an LC.
 - Start with LC

Note: This option is not available for Echo[®] MS systems.

Refer to the section: Data Acquisition Panel.

A

WARNING! Fire Hazard. Do not direct more than 3 mL/min of solvent in the ion source. Although the LC components can provide a flow rate up to 5 mL/min, directing more than 3 mL/min of solvent could result in solvent accumulating in the ion source. Flow can be split with a tee to make sure that the maximum flow rate provided to the ion source does not exceed 3 mL/min.

If the user clicks **Start with LC**, then the Start with LC dialog opens. For information about the fields on this dialog, refer to the document: *Help System*.

Note: The LC system must be activated and an LC method must have been created and saved.

Figure 5-8 Start with LC Dialog

Start with LC	X
Project Name:	Default
MS Method:	Untitled 1
LC Method:	new-method 💙
Rack Type:	v.
Rack Position:	v
Plate Type:	v
Plate Position:	v
Vial Position:	v
	OK Cancel

2. (Optional) To view the data in the Explorer workspace, click **Open data exploration to view real-time data** (

Real-time acquisition is indicated in the Explore pane by the words **Acquiring**, **Finished**, or **Aborted** in the sample title.

Figure 5-9 Real-time Acquisition—Acquiring

- 3. (Optional) Optimize the MS parameters, as required. For a description of the parameters, refer to the document: *Help System*.
- 4. Click **Stop** in the Data Acquisition panel.
- 5. (Optional) To save the data, follow these steps:
 - a. Click **Save** to save the data. The Save Data dialog opens.
 - b. (Optional) Select the project and subfolder, if applicable, in which to save the data.
 - c. Type a name in the **File Name** field.

- d. Click Save.
- 6. Do one of the following to save the MS method:
 - Click **Save** > **Save** to save the method in the same project with the same name.
 - Click **Save > Save As** to save the method with a new name or in a different project.
 - Click **Save** > **Lock Method** to lock the method if it is ready for routine analysis.

Note: Lock the method to prevent unauthorized users from editing it. Only users with the **Lock/Unlock methods** permission can edit locked methods. Other users can only submit them.

The Save As MS Method dialog opens.

- 7. Type a name in the **File Name** field.
- 8. Click Save.

Work With Default Settings

Use this procedure to set the default method parameters. Default values for source and gas parameters apply to all of the experiment types. Default values for compound dependent parameters are defined for each experiment type. Default parameters are set for each polarity.

The changes are not applied to existing methods. Any methods created after the changes are made will have the new values.

- 1. Open the MS Method workspace.
- Click Advanced > Default settings. The Source and Gas Settings page is shown.
- 3. Select a Polarity.
- 4. Set the source and gas parameters. For a description of the parameters, refer to the document: *Help System*.

Note: For Negative polarity, only the **Spray voltage** can be adjusted. The other source and gas parameter values are taken from the Positive polarity.

- 5. Click Save.
- 6. Click **Compound Dependent Settings**. The Compound Dependent Settings page is shown.
- 7. Select the **Experiment type**.
- 8. Select a Polarity.
- 9. Set the parameters for the selected experiment type. For a description of the parameters, refer to the document: *Help System*.

10. Click Save.

LC Method Workspace

Use this workspace to create and manage LC methods.

Multiple methods can be open in the LC Method workspace. Using the **Views** menu, the user can change the arrangement of the method windows to tabbed, vertical tiled, horizontal tiled, or floating views. In floating view, windows can be resized, maximized, or minimized, moved outside of the SCIEX OS window, and moved to a different monitor.

The title bar of the method window contains the method and project names. In the tiled and floating views, the title bar of the active method is blue and the title bars of the other methods are gray. In the tabbed view, the tab for the active method is white, and the tabs for the other methods are blue.

Access to features in this workspace is controlled by the role assigned to the user. Refer to the document: *Laboratory Director Guide*.

Create an LC Method

Refer to the documentation that comes with the LC device.

- 1. Open the LC Method workspace.
- 2. Click New.
- 3. Click a device in the left panel and then edit the fields, as required.
- 4. Save and optionally lock the LC method by clicking one of the following commands:
 - Save: To save the LC method.
 - Save > Lock Method: To save and lock the LC method.

The Save As LC Method dialog opens.

5. Type a name for the LC method in the **File Name** field, and then click **Save**.

AE Method Workspace

Use this workspace to create and manage AE methods. When an Echo[®] MS system is activated, the **LC Method** tile on the Home page changes to **AE Method**.

Access to features in this workspace is controlled by the role assigned to the user. Refer to the document: *Laboratory Director Guide*.

Create an AE Method

Note: Make sure that the correct project name is selected in the status panel.

- 1. Open the AE Method workspace.
- 2. Click **New**.
- 3. Edit the fields, as required. For a description of the parameters, refer to the document: *Help System*.
- 4. Save and optionally lock the AE method by clicking one of the following commands:
 - Save: To save the AE method.
 - Save > Lock Method: To save and lock the AE method.

The Save As AE Method dialog opens.

5. Type a name for the AE method in the **File Name** field, and then click **Save**.

Batch Workspace

The Batch workspace contains information about a set of samples to be acquired and, optionally, processed. Batches tell the software the order in which to acquire and process the samples.

Access to features in this workspace is controlled by the role assigned to the user. Refer to the document: *Laboratory Director Guide*.

Note: For the selected autosampler, the rack type, rack position, plate type, plate position, and vial position are all dependent on each other and only certain values are valid.

Note: When used with the Echo[®] MS system, this workspace defines how the samples are arranged in the well plates. The system optimizes the sequence of acquisition for throughput.

Column Name	Definition	Field Value Requirements	
Sample and method information (
Sample Name	Name of the sample.	Less than 252 characters.	
Sample ID	A custom number or other identifier for the sample.	Less than 252 characters. The Sample ID field cannot contain any of these invalid characters: \/:;*?"<> =	
Barcode ID	Unique ID from a sample.	Less than 250 characters.	
MS Method	Name of the method.	The MS method must exist in the current project. The field is not case-sensitive.	

Table 5-1	Batch	Workspace	Columns
-----------	-------	-----------	---------

Column Name	Definition	Field Value Requirements
LC Method	(For all systems except Echo [®] MS systems) Name of the liquid chromatography method.	The LC method must exist in the current project. The field is not case-sensitive.
AE Method	(Echo [®] MS systems) Name of the acoustic ejection method. Shown when the Echo [®] MS system is active on the Devices page.	The AE method must exist in the current project. The field is not case-sensitive.
Rack Type	The rack type for the autosampler.	Must be one of the valid choices for the autosampler specified in the LC method.
Rack Position	The position of the rack on the tray.	Numerical value.
Plate Type	The type of well-plate in the autosampler. Note: This column is unavailable if the Rack Type describes vials.	Must be one of the valid choices for the autosampler specified in the LC method.
Plate Position	The position of the plate on the rack.	Must match one of the predefined autosampler plate positions.
Vial Position	(LC methods) The position of the vial in a rack or on a plate.	Numerical value. The largest value must not be larger than the number of vials in the rack.
Well Position	(AE methods) The position of the well on a plate. Shown when the Echo [®] MS is active on the Devices page.	Numerical value. The largest value must not be larger than the number of wells in the rack.

Table 5-1 Batch Workspace Columns (continued)

Column Name	Definition	Field Value Requirements
Injection Volume (µL)	The amount of sample to be injected.	Numerical value.
	Note:	
	For LC methods only, the injection volume is taken from the LC method. The user can override this injection volume in the Batch workspace or in the imported batch file. When the batch is submitted, the injection volume is validated against the range supported by the LC device. To revert to the injection volume specified in the LC method, delete the contents of this field, and then select the LC method again in the LC Method field.	
Sample Type	The type of sample.	Make sure that the sample type matches one of the predefined sample types. Any type that does not match is automatically replaced with Unknown.
Dilution Factor	The dilution factor for individual samples.	For SCIEX-developed methods, the value must be 1.000000.
		Must be a value greater than zero and with six decimal places. The default value is 1.000000. Do not leave the field blank.

Table 5-1 Batch Workspace Columns (continued)

Column Name	Definition	Field Value Requirements
Data File	The name of the file to which the acquired data is saved. Include the full path to the subfolder in which the file will be stored.	Must be less than 252 characters. The total number of characters includes the number of characters in the data subfolder path. The data file cannot contain any of these invalid characters: \/:;*? " < > =
		Tip! Click the arrow to select a subfolder from the list or type the name of a new subfolder. Make sure to include a backslash (\) between the subfolder and file name. If the subfolder does not exist, then it will be created when the batch runs.
		Note: (Echo [®] MS systems) Do not use the same data file name in multiple batches.
Processing Method	Name of the method. If an existing Results File will be used, then leave this field blank. When an existing Results File is selected, the value *Embedded Method* is automatically shown in this field.	Select a processing method from the list of processing methods in the project.
	Note: The processing method must be compatible with the MS method specified for the sample.	

Table 5-1 Batch Workspace Columns (continued)

Column Name	Definition	Field Value Requirements
Results File	The name of the file to which the processed results are saved. If a valid Results File is specified, then the sample data will be processed automatically after acquisition is complete. If the file name is invalid, then the batch submission process cannot be completed. Note: If an existing Results File is selected, then the embedded method for the selected Results file is used for processing, and the text in the Processing Method cell is replaced with *Embedded Method* .	The file name cannot contain any of these invalid characters: \ / ; : * ? " <> = The file path, including the file name and subfolders, must be less than 252 characters. Tip! Click the arrow to select an existing Results File from the list. To create a file, type the file name. The file will be created when the first sample in the submitted batch is processed. Note: (Echo [®] MS systems) Do not use the same results file name in multiple batches
Marker Well	The well used to align the timing file with the first well. The Marker Well must contain at least one of the components defined in the MS method specified in the MS Method column. Shown when the Echo [®] MS is active on the Devices page.	Select True for the marker well. All other wells are automatically set to False when the batch is submitted.
Comment	Text	Must be less than 50 characters. The Comment field cannot contain any of these invalid characters: \ / : ; * ? " < > =
Custom columns	(Optional) User-defined columns, in text, integer, or real number format.	Requirements depend on the format.
Component Concentr	ations (·

Table 5-1 Batch Workspace Columns (continued)

Column Name	Definition	Field Value Requirements
Component	The name of a component defined in the MS method, processing method or Results Table. The batch can contain up to 4,000 component rows.	Component names are taken from the MS method, for MRM scans, the processing method, or the Results Table. The name is validated during method creation. Components can also be added to the table manually. Refer to the section: Add a Component Concentration. Note: If the import file contains a data column that does not match any of the columns in the batch grid, then the column is treated as a Compound or Component Name column. A concentration column is
		added and it is populated with the values from this data column.
Component concentration	Analyte or internal standard concentration for standard and QC sample types. The table contains a column for each sample. The sample name is used as the column name.	Numerical value greater than or equal to zero.

Table 5-1 Batch Workspace Columns (continued)

Manage the Batch

Note: Make sure that the correct project name is selected in the status panel.

In the Batch workspace, use the following features to manage the batch.

To Do This	Do This
Show or hide columns	Click View . Refer to the section: Show or Hide Columns.
Cut rows	Click Manage Samples > Cut.
Copy rows	Click Manage Samples > Copy.
Paste rows	Click Manage Samples > Paste.

Table 5-2 Batch Workspace Features

To Do This	Do This
Insert a row	Click Manage Samples > Insert sample.
Delete a row	Click Manage Samples > Delete sample.
Select columns	Click View . Refer to the section: Show or Hide Columns.
Add a subfolders to a project	Click Manage Samples > Add data sub-folders . Refer to the document: <i>Help System</i> .
Print the batch	Click Print.
Save the batch to the current project	Click Save > Save or Save > Save As.
Export the batch as a txt or csv file	Click Save > Export.

Show or Hide Columns

- 1. Open the Batch workspace.
- 2. Click View.
- 3. Select or clear the column check boxes, as required, in the View dialog. For descriptions of the columns, refer to the table: Table 5-1.

View			X
Configure the samples for display and printing			
Maximum number of sample rows to use	10,000		
Select the columns to use			
Predefined Columns			
Sample Name	Sample ID	Barcode ID	
MS Method	LC Method	🗸 Rack Type	
Rack Position	V Plate Type	Plate Position	
Vial Position	V Injection Volume (ul)	✓ Sample Type	
Dilution Factor	🗸 Data File	Processing Method	
Results File	Comment		
Custom Columns			
Configure the component concentrations for printing			
		Apply Cancel	

4. Click OK.

Add a Custom Column

Use this procedure to add columns to the batch to store extra information about the sample, such as dry weight, so that it can be used in processing, for example, in formulas and calculated columns.

- 1. Open the Batch workspace.
- 2. Right-click in the batch grid, and then click **Add Custom Column**. The Add Custom Column dialog opens.
- In the Column name field, type a name for the column.
 The name must be unique. It cannot be the same as the name of any predefined column.

- 4. In the **Column type** field, select one of these types:
 - **Integer**: The column contains whole numbers. Decimal values will be rounded to the nearest whole number.
 - Real: The column contains real numbers, up to six decimal places.
 - Text: The column contains text, up to 128 characters.
- 5. Click Add.

The new column is added at the right of the Batch workspace.

Change the Name of a Custom Column

Note: The Column type cannot be changed.

- 1. Open the Batch workspace.
- 2. Right-click in the column to be changed, and then click **Edit Custom Column**. The Edit Custom Column dialog opens.
- In the Name field, type the new name for the column.
 The name must be unique. It cannot be the same as the name of any predefined column.
- 4. Click Apply.

Remove Custom Columns

- 1. Open the Batch workspace.
- 2. Right-click in the batch grid, and then click **Delete Custom Column**. The Delete Custom Column dialog opens.
- 3. Select the check box beside the names of the columns to be deleted.
- 4. Click **Delete**.

Import a Batch from a File

Prerequisite Procedures

• Create a batch file. For a description of the fields to be included in the file, refer to the table: Table 5-1.

Note: In the Microsoft Excel file being imported, the predefined columns must be first, followed by the custom columns. The column headers for the predefined columns must match the column names in SCIEX OS. If the column headers for the predefined columns are not correct, then the information will not be imported. Only a period is supported as a decimal separator in csv or xsl files.

Note: Close the batch file before importing it. The batch file cannot be imported if it is open in Microsoft Excel.

• (Optional for import from a Watson LIMS) To automatically populate the **LC Method** field, make sure that the name of the LC method is the same as the name of the MS method.

Note: The Watson LIMS does not have an LC method field. If the name of the LC method is not the same as the name of the MS method, then the LC method column must be populated manually.

Review the batch contents before submitting the samples.

Tip! To access the cut, copy, paste, add rows, and remove rows features, click **Manage Samples**.

- 1. Open the Batch workspace.
- 2. (Optional) Click **View** to select the columns that will be shown in the Batch workspace.
- 3. Click **Open > Import from file**. The Batch Import dialog opens.
- 4. Click Browse.
- 5. Navigate to the required file.
- 6. Click Open.
- 7. (Optional) Select or clear the **Append to current batch** check box, as required.

Note: Any existing data in the grid is overwritten if the user does not select the **Append to current batch** option.

8. Click Import.

Operating Instructions—Acquisition

9. (Optional) To use the plate layout as a reference for selecting or confirming a sample location, click **Plate Layout**.

The plate layout automatically provides well and vial positions for unassigned samples.

- 10. Make sure that the column oven temperature is reached before submitting the batch.
- 11. Save the batch:
 - a. Click **Save As**. The Save As Batch dialog opens.
 - b. Type a File Name and then click Save.
- 12. Submit the batch. Refer to the section: Submit a Batch.

Import a Batch from a LIMS

Prerequisite Procedures

• Configure the LIMS in the Configuration workspace. Refer to the document: *Help System*.

Note: To import a batch from a Watson LIMS, refer to the section: Import a Batch from a File.

- 1. Open the Batch workspace.
- 2. (Optional) Click **View** to select the columns that will be shown in the Batch workspace.
- Click Open > Import from LIMS. The Import a Batch File dialog opens.
- 4. Type the file location or file name.
- 5. Type the batch identifier in the **Batch Identifier** field.
- 6. (Optional) Select or clear the **Append to current batch** check box, as required.

Note: Any existing data in the grid is overwritten if the user does not select the **Append to current batch** option.

- 7. Click **Import**.
- 8. (Optional) To use the plate layout as a reference for selecting or confirming a sample location, click **Plate Layout**.

The plate layout automatically provides well and vial positions for unassigned samples.

- 9. Make sure that the column oven temperature is reached before submitting the batch.
- 10. Save the batch:
 - a. Click **Save As**. The Save As Batch dialog opens.

- b. Type a **File Name** and then click **Save**.
- 11. Submit the batch. Refer to the section: Submit a Batch.

Create a Batch Manually

Review the batch contents before submitting the samples.

Note: If the mass spectrometer is using contact closure to communicate with an external device, then follow these guidelines:

- Make sure that the sample sequence defined in the batch matches the sequence defined on the external device.
- Make sure that the method duration is less than or equal to the interval between injections, as defined on the external device.

Tip! To access the cut, copy, paste, add rows, and remove rows features, click **Manage Samples**.

- 1. Open the Batch workspace.
- 2. (Optional) Click **View** to select the columns that will be shown in the Batch workspace.

Tip! To use an existing batch, click **Open > Open**.

- 3. Click New.
- 4. (Optional) To use the plate layout as a reference for selecting or confirming a sample location, click **Plate Layout**.

The plate layout automatically provides well and vial positions for unassigned samples.

Type the batch information in the grid.
 For a description of the columns in the grid, refer to the table: Table 5-1.

Tip! The Batch workspace provides the following features to make creating batches easier:

- The content for some cells, such as the **Sample Type** cell, can be selected from a list in the cell. Click the right side of the cell to show the list.
- The second and subsequent rows added to a batch automatically populate with the values from the preceding row.
- The user can copy a single cell by selecting the cell, clicking the bottom right corner of the cell, and then dragging to the last row to which the cell content is to be copied.
- The user can copy a group of cells in the same row by selecting the cells, clicking the bottom corner of the right-most cell, and then dragging to the last row to which the cell content is to be copied.
- The user can copy a series of values by typing sequential values in two rows, selecting both cells, clicking the bottom right corner of the bottom cell, and dragging to the last row in the series.
- The user can use the Copy (**Ctrl+C**) and Paste (**Ctrl+V**) commands to copy the content of a cell or group of cells and then paste them in a new location.

Note: LC columns are not available until an LC method is selected.

Tip! To configure the batch to process the sample automatically after it is acquired, use one of the following methods:

- To use an embedded processing method, select an existing **Results File**. The sample will be processed with the embedded method of the corresponding Results file.
- To use a new processing method, clear the **Results File** field. When the **Results File** field is cleared, the **Processing Method** field becomes available. Select a **Processing Method** and then type a new **Results File** name. The sample will be processed with the selected processing method.

When processing in the non-targeted screening workflow, a comparison sample cannot be selected for automatic processing. For processing methods that use the AutoPeak algorithm, the software always builds the integration model with the samples used to create the method.

- 6. (Optional) Define component concentrations. Refer to the section: Add a Component Concentration
- 7. (Optional) To apply decision rules to the batch, follow these steps:
 - a. Select the **Decision Rules** check box.
 - b. Click **Decision Rules** and then select **Apply** for each decision rule to be applied to the batch. To add decision rules, refer to the section: Add a Decision Rule.
c. Click Save.

Note: If the **Decision Rules** option is selected and at least one decision rule is active for a batch, then **Decision Rules: Active** is shown beside the batch name in the Queue workspace. If the active project is located on the network and the network is unavailable, then the text is **Decision Rules: Disabled** is shown.

- 8. Save the batch:
 - a. Click **Save As**. The Save As Batch dialog opens.
 - b. Type a File Name and then click Save.
- 9. Make sure that the column oven temperature is reached before submitting the batch.
- 10. Make sure that the system has been equilibrated with the MS and LC method that is used in the batch.
- 11. Submit the batch. Refer to the section: Submit a Batch.

Use the Plate Layout Feature to Create a Batch (LC System)

The plate layout feature provides a graphical representation of the rack and plate structures that can be used to populate the grid in the Batch workspace.

- 1. Open the Batch workspace.
- 2. Select an **MS Method**.
- 3. Select an **LC Method**. The LC system must be active.
- 4. Type the name of the **Data File** in which the acquired data will be saved.
- 5. Select the **Processing Method** that will be used to process the data after it is acquired.
- 6. Type the name of the **Results File** in which the processed data will be saved.
- Click Plate Layout. The Plate Layout window opens and, by default, shows a graphical representation of the plate.
- Set the properties for the plate. The window updates to show a graphical representation of the selected plate type.
- 9. On the graphical representation, click a sample position. The selected sample position is fully highlighted in the graphical representation. The Batch workspace is updated, starting with the first row that does not have the sample position defined completely, that is, a row that does not include the **Rack Type**, **Plate Type**, if wells are used, and **Vial Position** values. The grid shows the sample positions accordingly.

10. Continue to click sample positions as needed in the graphical representation to populate the grid in the Batch workspace.

If sample positions are typed in the grid in the Batch workspace, then the graphical representation is updated accordingly.

Tip! To remove all of the data associated with a specified rack type, click **Clear All**. If the selected rack type identifies a plate, then the menu under **Clear All** includes **Clear Front** and **Clear Back**.

11. To specify a replicate selected sample position, click the sample position in the graphical representation.

The graphical representation of the plate layout shows the replicate sample position with a colored outline and the grid in the Batch workspace shows the data accordingly.

Note: Unselected positions are shown in gray, and positions that have been selected once are shown in blue with a gray border.

- To see the sample index in the graphical representation, hover the cursor over the highlighted sample position.
 A tooltip shows the sample index.
- 13. When all of the positions are assigned and reviewed, click **Close** in the Plate Layout window and then click **Save** in the Batch workspace.

Use the Plate Layout Feature to Create a Batch (Echo[®] MS System)

The plate layout feature provides a graphical representation of the sample wellplates that can be used to populate the grid in the Batch workspace.

- 1. Open the Batch workspace.
- 2. Complete the first row of the batch grid:

- a. Select an **MS Method**.
- b. Select an **AE Method**.
- c. Type the name of the **Data File** in which the acquired data will be saved.
- d. Select the **Processing Method** that will be used to process the data after it is acquired.
- e. Type the name of the **Results File** in which the processed data will be saved.

3. Click **Plate Layout**.

The Plate Layout window opens and, by default, shows a graphical representation of the well plate. Subsequently, the window shows the plate type that was last used or the plate type specified for a currently highlighted sample.

4. Select the **Plate Type**.

The window updates to show a graphical representation of the selected plate type.

- 5. For **Sequence** field, click the icon representing the order in which samples are arranged on the plate. Options include the following:
 - **Z-Seq** (Z-Sequence): Samples are arranged from left to right in the first row, then left to right in the second row, and so on.
 - **N-Seq** (N-Sequence): Samples are arranged from top to bottom in the first column, then top to bottom in the second column, and so on.
 - **R-Ser-Seq** (Row-Serpentine-Sequence): Samples are arranged from left to right in the first row, then right to left in the second row, then left to right in the third row, and so on.
 - **C-Ser-Seq** (Column-Serpentine-Sequence): Samples are arranged from top to bottom in the first column, then bottom to top in the second column, and then top to bottom in the third column, and so on.
- 6. On the graphical representation, click the sample positions to be added to the batch, select the sequence and then click **Add Selected**.

Tip! To add all samples, click Select All. To clear all selections, click Remove All.

Tip! Drag across multiple wells to select them.

The selected samples are added to the grid in the Batch workspace.

- 7. Click Close.
- 8. Complete the remaining fields in the batch grid.
- 9. (Optional) Save the batch.
- 10. Submit the batch. Refer to the section: Submit a Batch.

Manage Component Concentrations Add a Component Concentration

The batch contains component concentrations defined in the MS method, processing method, or Results Table. Use this procedure to add additional component concentrations.

Note: Component concentrations added using this procedure are editable for samples of type QualityControl and Standard. Component concentrations are also added to a batch when a processing method that contains components is defined for a sample. The component concentrations added by the processing method are only editable for samples with processing methods that contain the component.

- 1. In the Batch workspace, click **Component Concentrations** (12).
- 2. Click Manage Components > Add Component.
- 3. Type the name of the **Component**.
- 4. Click OK.

The new component concentration is added to the current batch.

Delete a Component Concentration

Use this procedure to remove a component concentration from the batch.

- 1. In the Batch workspace, click **Component Concentrations** (12).
- 2. Click Manage Components > Remove Component.

A list of components is shown. It contains all components added with the **Add Component Concentration** command, or when a MRM method or processing method was added to the batch.

- 3. Select the component from the list.
- 4. Click OK.

Manage Decision Rules Add a Decision Rule

Use this procedure to add a decision rule.

- 1. In the Batch workspace, click **Decision Rules**. The Decision Rules dialog opens.
- 2. Click **Add Rule**. The Decision Rule Configuration dialog opens.
- 3. Type a name for the decision rule.

- 4. Define the properties for the decision rule, including the flagging rule, when the decision rule will be evaluated, and the response. Refer to the document: *Help System*.
- 5. Click **Save** to save the decision rule.
- 6. Click **Save** to close the dialog.

Note: If the user does not click **Save** on the Decision Rules dialog, then the new decision rule is not saved.

Change a Decision Rule

- 1. In the Batch workspace, click **Decision Rules**. The Decision Rules dialog opens.
- 2. Click the **Decision Rule Name** of the decision rule to be changed. The Decision Rule Configuration dialog opens.
- 3. Change the **Decision rule name** and the settings for the decision rule, including the flagging rule, when the decision rule will be evaluated, and the response. Refer to the document: *Help System*.
- 4. Click **Save** to save the decision rule.
- 5. Click **Save** to close the dialog.

Note: If the user does not click **Save** on the Decision Rules dialog, then the new decision rule is not saved.

Delete a Decision Rule

Use this procedure to delete a decision rule.

- 1. In the Batch workspace, click **Decision Rules**. The Decision Rules dialog opens.
- 2. Click the Flagging Rule Used.
- 3. Click **Delete Rule** to delete the decision rule.
- 4. Click Save.

Create a Duplicate Rule

Use this procedure to create a duplicate rule.

- 1. In the Batch workspace, click **Decision Rules**. The Decision Rules dialog opens.
- 2. Click the decision rule to be duplicated.
- 3. Click **Duplicate Rule**.

4. Click Save.

Import Decision Rules

Use this procedure to import decision rules.

- 1. In the Batch workspace, click **Decision Rules**. The Decision Rules dialog opens.
- 2. Click Import List.
- 3. Navigate to and select the text file to be imported, and then click **Open**.
- 4. Click Save.

Export Decision Rules

- 1. In the Batch workspace, click **Decision Rules**. The Decision Rules dialog opens.
- 2. Click Export List.
- 3. Navigate to the folder where the text file will be saved, type a file name, and then click Save.
- 4. Click Cancel.

Equilibrate the System

Equilibrate the system at the start of the day, before a new method is run, or before submitting a batch. Equilibration warms up and prepares the mass spectrometer and LC system or the Echo[®] MS system for the next sample or batch.

- 1. Click **Equilibrate** on the status panel. The Equilibrate dialog opens.
- 2. Select an MS Method from the **MS Method** list.
- 3. Do one of the following:
 - Select an LC method from the LC Method list.
 - Select an AE method from the AE Method list.
- Type the equilibration time in the Time (min) field, in minutes.
 (Echo[®] MS systems) A minimum of 10 minutes equilibration time is recommended.
- 5. Click OK.

When equilibration is complete, the system status in the status panel is Ready.

Tip! Open the Queue workspace to monitor the progress of the equilibration. The Queue workspace indicates how much time is required for the equilibration to complete. To stop equilibration before it finishes, click **Stop** in the Queue workspace.

Submit a Batch

Prerequisite Procedures

- Equilibrate the System.
- Open a batch in the Batch workspace.

1. Click Submit.

The Submit Samples dialog opens.

2. Click **OK** to continue.

If errors are shown at the top of the screen, resolve them, and then click **Submit** again. The batch is not added to the queue until all of the errors are resolved.

Tip! If the queue is not started, navigate to the Queue workspace, and then click **Start** on the menu bar.

Submit a Single Sample to the Queue from the Batch Workspace

Prerequisite Procedures

- Equilibrate the System.
- Open a batch in the Batch workspace.
- 1. Select the row index number of the sample.
- 2. Click **Submit**. The Submit Samples dialog opens.
- 3. Click **OK** to continue.

If errors are shown at the top of the screen, resolve them, and then click **Submit** again. The batch is not added to the queue until all of the errors are resolved.

Tip! If the queue is not started, navigate to the Queue workspace, and then click **Start** on the menu bar.

Submit Multiple Samples to the Queue from the Batch Workspace

Prerequisite Procedures

- Equilibrate the System.
- Open a batch in the Batch workspace.
- 1. Do one of the following:
 - Press Ctrl while clicking the sample row index number of each sample.
 - Drag up or down the list of index numbers.

Note: Samples are submitted in the order that they are selected and not in the order that they are shown in the batch.

- 2. Click **Submit**. The Submit Samples dialog opens.
- 3. Click **OK** to continue.

If errors are shown at the top of the screen, resolve them, and then click **Submit** again. The batch is not added to the queue until all of the errors are resolved.

Tip! If the queue is not started, navigate to the Queue workspace, and then click **Start** on the menu bar.

Queue Workspace

The Queue workspace shows:

- Queue status
- Batch status
- Sample acquisition and processing status

In this workspace, the user can manage batches and samples in the queue.

By default, the samples are not shown in the queue. Sample information is collapsed under the batch name. The batch status, the batch name, the number of samples in the batch, and the time remaining to acquire the current batch are shown.

Note: When the Echo[®] MS system is being used, the Queue workspace only shows batch information. Sample information is not available.

Access to features in this workspace is controlled by the role assigned to the user. Refer to the document: *Laboratory Director Guide*.

Note: Data is acquired simultaneously to both a SCIEX OS wiff2 file and a wiff file that is compatible with the Analyst software.

Note: Do not manually change the integrated diverter valve position during sample acquisition.

Figure 5-12 Queue Workspace

¢) • Queue		∆								
						Start		Stop	Print	Manage	• 😣
	Acquisition Status	Est. Start Time	Sample Name	MS Method	LC Method	Data File	Project	Processing Statu	s Processing !	Method	Results File
4	🕝 Equilibration -	l samples									A.
	0	4/24/2019 2:58:49 PM	Equilibration Sample	VitD SST 20190320			Default				

Table 5-3 Queue Workspace Columns

Label	Description		
Batch Name	The name of the batch that was submitted to the queue, the number of samples in the batch, and the decision rule processing status. The queue contains a row for each batch. By default, the batch is collapsed, but it can be expanded to show all of the samples in the batch. For each sample, information is shown in the following columns.		
	Note: For batches with decision rule processing, the software delays the acquisition of the next sample to allow processing of the current sample to finish. If processing does not finish within the allowed time, then decision rules are disabled. The delay time is 1.5 times the acquisition time.		
Acquisition Status	The status of the data acquisition. For information on the status icons, refer to the section: Queue Icons.		
Est. Start Time	The time that acquisition of this sample started.		
Acquisition Time	How long it took to acquire this sample.		
Sample Name	The name of the sample, as specified in the batch.		
Sample ID	The identifier for the sample, as specified in the batch.		
Barcode	The barcode number of the sample vial, as specified in the batch.		
Rack Code	The identifier for the LC rack, as specified in the batch.		
Rack Position	The installed location of the LC rack, as specified in the batch.		

Label	Description		
Plate Code	The identifier for the LC plate, as specified in the batch.		
Plate Position	The installed location of the LC plate, as specified in the batch.		
Vial Position	The location of the sample in the LC plate or rack.		
MS Method	The MS method, as specified in the batch.		
LC Method	The LC method, as specified in the batch.		
Injection Volume	The amount of sample injected.		
Data File	The name of the data file to which the data will be acquired.		
Scanned Barcode	The identifier for the vial.		
User	The name of the user who submitted the batch.		
Project	The project in which the data file will be saved.		
Data File Status	The status of the data file.		
Auto Processing Status	The status of the data processing. For information on the status icons, refer to the section: Queue Icons.		
Processing Method	The processing method that will be used to process the acquired data. If an existing Results file is being used, then this column contains the text *Embedded Method* .		
Results File	The file to which the processed data will be written.		
Decision Rule Status	The flagging state of a sample and the action take by the decision rule.		
Decision Rule Summary	The name of the decision rule that is triggered.		

Table 5-3 Queue Workspace Columns (continued)

Manage the Queue

Acquisition begins after the samples have been submitted from the Batch workspace. Make sure that the system is equilibrated prior to submitting a batch. Refer to the section: Equilibrate the System.

Note: Run the sample again if an abnormal termination occurs during sample acquisition. If the abnormal termination is caused by a power failure, then the temperature of the autosampler tray is not maintained and sample integrity might be compromised.

Use the features in the following table to manage the samples and batches in the queue.

To Do This	Do This			
Show or hide columns.	Click Manage > Display Columns . Refer to the section: Show or Hide Columns.			
View all of the samples in the batch.	Click .			
Collapse all of the samples in the batch.	Click 4.			
Start acquisition.	Click Start . Equilibrate the system before running any samples.			
View the status of the submitted samples.	Double-click the batch header.			
Reacquire the selected	1. Click the samples.			
samples.	2. Click Manage > Reacquire samples.			
Delete the selected samples.	1. Click the samples.			
	2. Click Manage > Delete samples.			
Delete all of the samples	1. Click the sample.			
below the selected sample.	2. Click Manage > Delete samples below row selection.			
Clear the queue of all of the acquired batches or samples.	Click Manage > Clear queue.			
Remove the focus from a selected row.	Click Manage > Clear all selections.			
Move the selected batch or	1. Click the batch header.			
sample to the top of the queue.	2. Click Manage > Move row to top.			
	Note: Only single batches or samples that have not been acquired can be moved.			
Move the selected sample up	1. Click the sample.			
in the queue.	2. Click Manage > Move row up.			
	Note: Only single samples that have not been acquired can be moved.			

To Do This	Do This			
Move the selected sample	1. Click the sample.			
	2. Click Manage > Move row down.			
	Note: Only single samples that have not been acquired can be moved.			
Collapse all of the samples and batches.	Click Manage > Collapse all rows.			
Show all of the samples and batches.	Click Manage > Expand all rows.			
View data from a sample that is in the process of being acquired.	Do one of the following:Double-click the sample that is in the process of being acquired.			
	Note: Double-click one of the columns to the left of the Processing Status column.			
	 Click Open data exploration to view real time data (^A) in the Data Acquisition panel. 			
View data from a sample that has been acquired.	Double-click the green check mark (?) in the Acquisition Status column.			
View the Results file that was created.	Double-click the green check mark (<>>) in the Processing Status column.			
View the barcode vials that	1. Click Manage > Display Columns.			
are being scanned.	 Select the Barcode or Scanned Barcode check box, or both, in the Select Columns dialog. Refer to the section: Show or Hide Columns. 			
	3. Click OK .			
Stop the queue.	1. Click Stop.			
	2. Select Stop now or Stop after the current tasks are completed.			
	3. Click OK .			

Table 5-4	Queue	Works	bace Fe	eatures ((continued))
	Quouo	1101100		Jului 00 ((continuou)	/

To Do This	Do This
Stop processing of all of the remaining queued samples.	 Click Cancel remaining processing. Click Yes.
Print the queue.	Click Print from the workspace menu.

Show or Hide Columns

- 1. In the Queue workspace, click Manage > Display Columns.
- 2. Select or clear the column check boxes, as required, in the Display Columns dialog. For a description of the columns, refer to the table: Table 5-3.

Display Columns 🛛 🛛 🛛				
Select the columns to display:				
Acquisition Status				
✓ Est. Start Time				
Acquisition Time				
✓ Sample Name				
Sample ID				
Barcode				
Rack Code				
Rack Position				
Plate Code				
Plate Position				
Vial Position				
MS Method				
C Method				
Injection Volume (µl)				
🗹 Data File				
Scanned Barcode				
User				
V Project				
Data File Status				
Processing Status				
Processing Method				
✓ Results File				
OK Cancel (199				

Figure 5-13 Display Columns Dialog

3. Click OK.

Queue Icons

Table 5-5 Queue Icons

Icon Name		Description
•	Expand arrow	Shows the samples in the batch.
4	Collapse arrow	Hides the samples in the batch.

lcon ¹	Name	Description
0	Completed	(Not applicable to Echo [®] MS systems) The sample or entire batch was acquired successfully. Double-click this icon to open the sample in the Explorer workspace.
		(Echo [®] MS systems) The batch was acquired successfully. Double-click this icon to open the batch in the Explorer workspace.
A	Warning	(Not applicable to Echo [®] MS systems) The sample was acquired, but the user stopped or extended the acquisition.
		(Echo [®] MS systems) The batch was acquired, but the user stopped or extended the acquisition.
8	Failed	(Not applicable to Echo [®] MS systems) The sample or any sample within the batch was not acquired successfully.
		(Echo [®] MS systems)The batch or any sample within the batch was not acquired successfully.
*	Failed	(Not applicable to Echo [®] MS systems) The calibration sample did not meet the acceptance criteria. Double-click the icon to view the status report.
		(Echo [®] MS systems)The calibration batch did not meet the acceptance criteria. Double-click the icon to view the status report.
0	In Progress	The sample or batch is being acquired.
C	Waiting	The sample or batch has not been acquired yet or is not in the process of being acquired.
1	Barcode Warning	There was a barcode reading error or a mismatch of the barcode scan and the sample.

Table 5-6 Acquisition Status Icons

¹ If decision rules are used, then the acquisition status might be affected by the decision rule. For example, the decision rule might abort a sample or stop the queue. The decision rule takes into account all samples in the batch and, if the samples are being processed into different Results files, then their associated Results files. Even samples that are no longer visible in the queue are taken into account.

lcon ²	Name	Description	
0	Completed	 (Not applicable to Echo[®] MS systems) The sample was processed successfully. Double-click this icon to open the Results file in the Analytics workspace. (Echo[®] MS systems)The batch was processed successfully. Double-click this icon to open the Results file in the Analytics workspace. 	
A	Warning	Processing was stopped by the user.	
8	Failed	 (Not applicable to Echo[®] MS systems) The sample was not processed successfully. (Echo[®] MS systems) The batch was not processed successfully. 	
0	In Progress	(Not applicable to Echo [®] MS systems) The sample is being processed. (Echo [®] MS systems)The batch is being processed.	
0	Waiting	(Not applicable to Echo [®] MS systems) The sample has not yet been processed. (Echo [®] MS systems) The batch has not yet been processed.	

Table 5-7 Processing Status Icons

Table 5-8 Decision Rule Status Icons

lcon ^{3 4}	Name	Description	
>	Flagging rule passed	The sample meets the pass criteria for the flagging rule configured in the decision rule.	
	Flagging rule marginal	The sample meets the marginal criteria for the flagging rule configured in the decision rule.	

² If the **Processing Status** column is empty, then no processing method or Results file was selected for the sample.

³ The flagging state icons and their tooltips are shown when the user hovers over the decision rule name, flagging rule name, and action taken.

⁴ If the user selects to evaluate the rule after all standards are acquired, then the statuses of the flagged samples are updated retroactively.

lcon	Name	Description
•	Flagging rule failed	The sample meets the fail criteria for the flagging rule configured in the decision rule.
0	Queue stopped	The queue is stopped based on a decision rule. This icon is also shown when the queue is stopped and the next batch is acquired.
ſ	Sample injected	The sample is reinjected based on a decision rule or the sample is injected from a vial configured in the decision rule.

Table 5-9 Data File Status Icons

lcon	Name	Description	
0	Transfer Complete	(Not applicable to Echo [®] MS systems) The sample has been successfully transferred to the network project.	
		(Echo [®] MS systems) The batch has been successfully transferred to the network project.	
A	Transfer in Process	(Not applicable to Echo [®] MS systems) The sample is being transferred to the network project.	
		(Echo [®] MS systems) The batch is being transferred to the network project.	
8	Transfer Failed	(Not applicable to Echo [®] MS systems) The sample transfer failed. SCIEX OS will try to transfer the sample again.	
		(Echo [®] MS systems) The batch transfer failed. SCIEX OS will try to transfer the batch again.	

MS Tune Workspace

A dat file is created by the software when the instrument data is saved. Use this file to restore earlier parameter states. The dat backup file is named using the time that the file was created, not the time that the file was backed up.

Note: (SCIEX 4500, 5500, 5500+, 6500, and 6500+ systems) Instrument optimization should be performed using the ESI probe only.

Note: (SCIEX 7500 systems) Instrument optimization should be performed with the Analytical probe and the corresponding E Lens technology. Intensity specifications only apply to this configuration.

Access to features in this workspace is controlled by the role assigned to the user. Refer to the document: *Laboratory Director Guide*.

Optimize the Detector

When the system sensitivity is low, use this procedure to verify that the detector voltage is optimized. During the procedure, the software can adjust the detector voltage to provide the optimum sensitivity. When the optimization is completed, the user can save the optimized value or discard the changes.

Note: Make sure to perform this procedure in both High Mass and Low Mass modes.

- 1. Open the MS Tune workspace.
- 2. From the **Tuning Procedures** list, do one of the following:
 - Select Positive Detector Optimization or Negative Detector Optimization.
 - Select Detector Optimization.

The Introduction page is shown. It describes the purpose of the optimization process, any prerequisites, and the instructions.

- 3. Make sure that the syringe pump is properly configured. Refer to the document: *System User Guide*. Then click **Next**.
- 4. Make sure that the spray is stable and then click **Next**.
- 5. Follow the on-screen instructions. Refer to the document: *Help System*. The optimization report is shown.
- 6. (Optional) Save the report by following these steps:
 - a. On the Report page, click Save report as.
 - b. Navigate to the folder where the report will to be saved, type a **File name**, and then click **Save**.

Note: The software also saves the corresponding wiff data files and optimization report in the same folder.

- 7. Click Next.
- 8. Click Save Settings.

The following message is shown: "Tuning settings were saved".

Tune MS Scans

Note: Make sure to perform this procedure in both High Mass and Low Mass modes.

- 1. Open the MS Tune workspace.
- 2. Click **Tuning Procedures** > **MS Scan Tuning**. The MS Scan Tuning Settings window is shown.
- 3. Select whether to **Verify MS scans** or **Tune and calibrate MS scans**. Refer to the document: *Help System*.

If Verify MS scans is selected, then select Show tuning status to show pass or fail status.

- 4. Select the tuning procedure to be used. Refer to the document: *Help System*.
- 5. Configure the procedure settings for the selected tuning procedure.
- 6. Click Next.

The Introduction page is shown. It describes the purpose of the tuning procedure, any prerequisites, and the instructions. Refer to the document: *Help System*.

7. Click Next.

The Achieve Stable Spray page is shown.

Figure 5-14 Example: Stable Spray (Positive Polarity, Low Mass Mode)

Figure 5-15 Example: Stable Spray (Negative Polarity, High Mass Mode)

- 8. Wait until the spray is stable and then click **Next**.
- 9. Optimize the ion source gas 1. Refer to the document: *Help System*. The software guides the user to optimize the selected scan types and scan speeds.

10. Follow the on-screen instructions.

The optimization Report page is shown. The following figures show example graphs for the procedure performed in High Mass mode. The images are for illustration purposes only. If the procedure is performed in Low Mass mode, then the peaks 1522 (in positive) and 1566 (in negative) will not be shown in the graphs. The peaks of interest and shapes are similar for Q1 and Q3 scan types.

Figure 5-16 Example: Positive Q1 Scan (High Mass Mode)

Figure 5-19 Example: Negative LIT Scan (High Mass Mode)

- 11. (Optional) Save the report by following these steps:
 - a. On the Report page, click Save report as.
 - b. Navigate to the folder where the report will to be saved, type a **File name**, and then click **Save**.

Note: The software also saves the corresponding wiff data files and optimization report in the same folder.

12. Click Next.

13. Click Save Settings.

The following message is shown: "Tuning settings were saved".

Restore Instrument Data

The software generates a copy of the instrument data file (dat) and then updates the current dat file whenever the user saves the tuning settings at the end of each tuning procedure. Previously saved settings can be restored using the **Restore Instrument Data** feature.

When each tuning procedure is performed, the report and data files are generated to track the optimized results. By default, the wiff2 data file and report can be found at D:\SCIEX OS Data\Optimization.

1. Open the MS Tune workspace.

2. From the **Restore Instrument Data** menu, select a dat file with an earlier timestamp to be restored.

Figure 5-20 Instrument Tuning and Optimization Dialog

- 3. (Optional) View the report for the dat file to be restored by following these steps:
 - a. Click View Report.
 - b. If a report was generated for the selected instrument data file, then navigate to and double-click the report file to open it.
- 4. Click Yes.

Explorer Workspace

Access to features in this workspace is controlled by the role assigned to the user. Refer to the document: *Laboratory Director Guide*.

Open Samples

Before performing data review tasks in the Explorer workspace, open the samples to review.

- 1. Open the Explorer workspace.
- 2. To open a single sample, follow these steps:
 - a. Click File > Open Sample. The Select Sample dialog opens.
 - b. Browse to and then select the sample to be opened.
 - c. Click OK.
- 3. To open multiple samples, follow these steps:
 - a. Click File > Open Multiple Samples.
 - b. In the Select Samples dialog, select the samples from the **Available** list and then click the arrow to move the files to the **Selected** list.

Tip! To select one sample, expand the file, click the sample, and then click the arrow.

c. Click OK.

Verify the Presence of an Analyte

Prerequisite Procedures

- Open Samples.
- 1. Extract ions. Refer to the section: Extract lons.
- 2. (Optional) Show the Data and Peaks table. Refer to section: Show the Data and Peaks Table.
- Review the peak area, intensity, masses, and charge states of the compounds.
 For SCIEX Triple Quad Systems, charge state is only available for full scan data types.

Extract lons

Prerequisite Procedures

• Open Samples.

Used to calculate one or more overlaid extracted ion chromatograms (XICs), which is the plot of the intensity sum over a given mass range as a function of retention time.

1. Click **Show > Extract Ion Chromatogram (XIC)**.

Figure 6-1 Show Menu: Extracted Ion Chromatogram (XIC)

Sho	w	
슌	Total Ion Chromatogram (TIC)	Ctrl+T
슌	Extracted Ion Chromatogram (XIC)	Ctrl+E
슌	Base Peak Chromatogram (BPC)	Ctrl+B

- 2. If the Specify XIC Ranges dialog opens, then perform these steps:
 - a. Type the **Center**, **Width**, and **Compound** values or import the values.

Note: The default title of the XIC includes the compound names shown in the cells for a given row.

Tip! When the **Center/Width** mode is used, a chemical formula rather than a mass can be specified for the **Center** value. When a neutral composition, such as H_2O , is used, a proton is automatically added for Positive mode or subtracted for Negative mode. For example, the *m*/*z* ratio of H_3O^+ is used for Positive mode. Specify an explicit charge state by ending the composition with '+*n*' or '-*n*' where *n* is the charge state. If the *n* is omitted, then it is assumed to be one. For example, if H_2ONa^+ is specified, then the *m*/*z* ratio of H_2ONa^+ is used as-is.

- b. (Optional) Use the features in the right-click menu to customize the options for ion extraction. For more information, refer to the document: *Help System*.
- c. Click OK.

If the active graph contains overlaid series from different samples, then the Process All Overlays? dialog opens.

Figure 6-2 Process All Overlays? Dialog

Process All Overlays?	\times			
Do you want to 'Show XICs' for all overlaid data sets or only the active one?				
 All Overlaid 				
O Active Only				
Only show this dialog again if the shift key is dow	n			
OK Cancel				

- 3. If the Select MRMs dialog opens, then select the MRMs to include in the XIC, and then click **OK**.
- 4. If the Process All Overlays? dialog opens, then follow these steps:
 - a. Do one of the following:
 - Select All Overlaid to generate overlaid XICs for all of the available samples.
 - Select Active Only to generate XICs only from the currently active sample.
 - b. Click OK.

If the **Only show this dialog again if the shift key is down** check box is selected, then the selected action is always used unless the user holds the **Shift** key to change the option.

Open a Total Ion Chromatogram

Prerequisite Procedures

• Open Samples.

A total ion chromatogram (TIC) is created by summing the intensity contributions of all of the ions from a series of mass scans. Use the TIC to view an entire data set in a single pane. The TIC consists of the summed intensities of all of the ions in a scan plotted against time in a chromatographic pane.

- Click Show > Total Ion Chromatogram (TIC). If the active graph contains overlaid series from different samples, then the Process All Overlays? dialog opens.
- 2. If the Process All Overlays? dialog opens, then follow these steps:
 - a. Do one of the following:

- Select All Overlaid to generate overlaid TICs for all of the available samples.
- Select Active Only to generate TICs only from the currently active sample.
- b. Click OK.

If the **Only show this dialog again if the shift key is down** check box is selected, then the selected action is always used unless the user holds the **Shift** key to change the option.

3. Right-click in the TIC and then use the features in the right-click menu.

Figure 6-3 Total Ion Chromatogram Right-Click Menu

Q • 1	Explorer			
💦 File I	Edit Show	Graph	Process	Bio To
) Remove Act Remove All) Add Caption Edit Caption) Delete Capti Delete All Ca) Paste Image Delete Imag	tive Trace Traces Exc a aption e e 8	cept Active	2 ×

ltem	Description
1	Available when there is more than one overlaid trace. Removes the currently active trace from the graph. To remove a trace that is not currently active, activate it and then select the feature.
2	Available when there is more than one overlaid trace. Removes all of the traces except the currently active trace. If the trace to be kept is not currently active, then activate it and select the feature.

ltem	Description
3	Adds text to a graph.
	If required, click Font to adjust the font properties and then click OK . The caption is added at the (x, y) position where the user right-clicked to open the menu.
	After the caption has been added, the user can drag it to a new location. If the user drags it to the X- or Y-axis, then this cancels the drag operation.
	The character sequences '\d' and '\u' are treated in a special way. In the former case, the one character immediately following is drawn as a subscript and in the latter case as a superscript. In both cases, the special characters are not visible. This is particularly useful for chemical formulae. For example, 'H\d3O\u+' is shown as H_3O^+ .
4	Edits the selected caption. The user can also open this dialog by double-clicking a caption.
5	Deletes the selected caption. Alternatively, drag the caption outside the graph to delete it.
6	Available if the graph contains at least one caption. Removes all of the captions at once.
7	Pastes an image in the graph.
8	Deletes the selected image from the graph.

Open a Base Peak Chromatogram

Prerequisite Procedures

• Open Samples.

Generates a plot of the intensity of the largest peak in each spectrum as a function of time.

1. Click Show > Base Peak Chromatogram (BPC).

Figure 6-4 BPC Options Dialog

BPC Options		×	
Mass tolerance:	0.40	Da	
Use limited m	ass range		
Start mass:		Da	
End mass:		Da	
Use limited tir	ne range		
Start time:		min	
End time:		min	
Only show this dialog again if the shift key is down			
	ОК	Cancel	

2. Complete the fields on the BPC Options dialog. For information about the fields, refer to the document: *Help System*.

Note: If a chromatogram with a single selection spanning more than 1.0 minutes is active when the base peak chromatogram is being generated, then the time range defaults to the time range for the selection. Otherwise, the last time range is used. The limited time range saves the user from manually typing the range.

If the active graph contains overlaid series from different samples, then the Process All Overlays? dialog opens.

Figure 6-5 Process All Overlays? Dialog

Process All Overlays?				
Do you want to 'Show BPCs' for all overlaid data sets or only the active one?				
O All Overlaid				
 Active Only 				
Only show this dialog again if the shift key is down				
ОК	Cancel			

3. If the Process All Overlays? dialog opens, then follow these steps:

- a. Do one of the following:
 - Select **All Overlaid** to generate overlaid BPCs for all of the available samples.
 - Select Active Only to generate BPCs only from the currently active sample.
- b. Click OK.

If the **Only show this dialog again if the shift key is down** check box is selected, then the selected action is always used unless the user holds the **Shift** key to change the option.

Show the Data and Peaks Table

Prerequisite Procedures

• Open Samples.

The Data and Peaks Table contains two different tables. The Data table shows the raw (X, Y) values comprising a data set and the Peaks table shows information about the peaks themselves. The table is generated when a graph is active.

Note: Only peaks that are above the current threshold in the graph, set using the blue arrow on the Y-axis of the graph, are present. Refer to the section: Work with Data in Graphs.

This feature is used to show a pane containing two tables for the currently active data: one table for the raw (X, Y) values and one for the peak list.

1. Click Show > Data and Peaks Table.

Sho	w	
슌	Total Ion Chromatogram (TIC)	Ctrl+T
슌	Extracted Ion Chromatogram (XIC)	Ctrl+E
슌	Base Peak Chromatogram (BPC)	Ctrl+B
	IDA Explorer	
	LC/MS Contour Pane	
	UV/DAD/ADC Channel	
	LC Traces	
	DAD Total Wavelength Chromatogram ((TWC)
	DAD Extracted Wavelength Chromatogram (XW	
	DAD Contour Pane	
	Data and Peaks Table	
	Sample Information	Ctrl+I
	Overlaid Traces as Heat Map	

Figure 6-6 Show Menu: Data and Peaks Table

2. Use the features in the following table.

Table 6-1 Data and Peaks Table Features

To Do This	Do This
Sort the table based on that field.	Click the column heading.
Copy the currently selected cells.	Right-click in the table and then click Copy . If the Data tab is active, then the selected X- and Y-values are copied. If the Peaks tab is active, then the selected peak information is copied.
Copy only selected rows.	First select the rows by dragging in the row-selector column or by using the Shift or Ctrl keys to select multiple rows. Then right-click in the table and click Copy .
Select multiple columns.	Hold the Ctrl key and then click the column headings. If the user just clicks a column heading, then the column is sorted.
Copy the entire table.	Click Edit > Select All and then click Edit > Copy.

To Do This	Do This
Export data as text.	Right-click in the pane and then click Export Data as Text .
	Saves the entire data list to the specified file. The X- and Y-values are separated with a tab and there is a hard return after each (X, Y) pair.
Export peak list data as text.	Right-click in the pane and then click Export Peak List as Text .
	Saves the entire peak list to the specified file. This does not include peaks that are below the current threshold set in the Y-axis of the associated graph. The peak metrics are separated with a tab and there is a hard return after each peak.

Table 6-1 Data and Peaks Table Features (continued)

3. Review the peak area, intensity, masses, and charge states of the compounds.

Note: Charge states are available for full scan data types only.

Show Sample Information

Prerequisite Procedures

• Open Samples.

The Sample Information pane shows a textual description of the experiment used to acquire the active data. This information includes sample-specific information, including the sample name and information about the data acquisition, such as the number and type of the experiments.

If two or more Sample Information panes, associated with different samples from the same data file, are visible, then clicking an item in the tree view for any one of the panes causes all of the other panes to scroll to the corresponding section. This assumes that sections with the same names exist in all of the panes. This feature is useful if the user wants to compare two similar, but not identical, Sample Information panes.

Click Show > Sample Information.

Show the Graph Selection Information

Prerequisite Procedures

• Open Samples.

The Graph Selection Information dialog shows information about the selected region in a chromatogram or spectrum and is generated when one of those panes is active.

1. Click Window > Graph Selection Window.

Figure 6-7 Graph Selection Info Dialog

Graph Selection Info ×			
Default Info 🝷 🐼 🙏 👌			
No selection			

2. Make one or more selections in the chromatogram or spectrum graph.

I Iguic 0-0 Gruph Ocicculon nino Dialog

3. Select an option from the list: **Default Info**, **XY Info**, **Standard Deviations**, **Signal/Noise**, or **Manual Reconstruct**, if applicable.

Figure 6-9 Selection Information Options

For a description of the fields on the dialog, refer to the document: *Help System*.

- 4. (Optional) Calculate the signal-to-noise ratio manually.
 - a. Select a chromatograph or, in the Mass Reconstruction workflow, a reconstruction graph.
 - b. Select both the noise region and the target peak, using the **Shift** key to make multiple selections.

c. Select **Default Info > Signal/Noise**.

5. (Optional) Click **Options** (M), set the Graph Info options, and then click **OK**. For a description of the options, refer to the document: *Help System*.

For example, to use 3 Sigma as the noise multipler, set **Noise multipler for S/N** to **3**.

6. (Optional) Click **Fill Peaks** (.).

The active graph switches between a mode in which peaks are filled using alternating dark and light fills and a mode in which they are not. This feature is useful if the user wants to see the peak extent that corresponds to the **Peak Width at Base**.

7. (Optional) Click Show Point Symbols (^A.). All spectra in the active pane switch between a mode in which data points are indicated with point symbols and a mode in which they are not. This feature is useful if the user is closely examining a peak and wants to see how many data points it comprises instead of using only the textual information shown in the main window.

Edit Settings in Graphs

Prerequisite Procedures

• Open Samples.

Click Edit and then use the features in the Edit menu.

Figure 6-10 Edit Menu: Options

ltem	Description
1	Copies the current data to the clipboard. When a spectrum or chromatogram is active, a picture of this active graph is copied.
2	When a spectrum or chromatogram is active, copies the current graph to the clipboard as a picture.

ltem	Description
3	Copies an image of the entire active window to the clipboard. The title bar of the window and the toolbars of its various panes are not included.
4	Pastes data from the clipboard in the current view.
5	When a table is active, selects all of the rows in the table. When a text pane is active, selects all of the text.
6	Allows the user to set options for the graph appearance, peak labeling and finding, auto processing, and calculating the XIC ranges. Refer to the section: Set Options.
7	Restores the default Explorer options. Refer to the section: Reset Options.

Work with Data in Graphs

Prerequisite Procedures

• Open Samples.

1. To set the threshold for labeling peaks and subsequent features such as the **Data and Peaks** table, drag the blue arrow that is shown on the Y-axis of the graphs.
Figure 6-11 Blue Arrow on the Y-axis

2. Use the features in the **Graph** menu.

Figure 6-12 Graph Menu: Options

ltem	Description	
1	Selects portions of graphs to be processed in subsequent operations. For example, select an area in a chromatogram and then double-click to obtain an averaged spectrum. Use the Set Selection feature to type specific X-ranges so that selections can be set more accurately than is possible using the cursor.	
	a. Click Graph > Set Selection.	
	The Set Selection dialog opens.	
	b. Type the Center and Width values.	
	c. Click OK .	
	Tip! To set selections in a graph manually, drag the cursor in the plotting region to make a selection. If the Shift key is held, then any current selections are kept.	

ltem	Description		
2	Expands the Y-values within a range by a specified factor for plotting purposes.		
	a. Open a sample or multiple samples.		
	b. Select a portion of the graph.		
	c. Click Graph > Expand Selected Y-Values by.		
	The Expand Selection dialog opens.		
	d. Type the expansion factor.		
	e. Click OK .		
3	 Removes all of the expansion ranges. In a graph that has expanded ranges, click Graph > Clear Expansion Ranges. 		
4	 Removes the currently active trace from the graph. This feature is available when there is more than one overlaid trace. In a graph that has more than one overlaid trace, click Graph > Remove Active Trace. 		
5	 Removes all of the traces except the currently active one. This feature is available when there is more than one overlaid trace. In a graph that has more than one overlaid trace, click Graph > Remove All Traces Except Active. 		
6	Removes overlaid traces from the graph for which all of the data points are below the current threshold setting.		
	If the user zoomed the graph so that only a portion of the X-range is currently visible, then a dialog opens. The user can select whether to remove traces that are below the threshold using the entire range or using only the currently visible portion.		
	 In a graph that has more than one overlaid trace, click Graph > Remove Traces Below Threshold. 		
7	 When the active graph contains more than one overlaid trace, draws all of the traces except for the currently active one using a fainter, less intense, color than normal. Use this feature to focus on the active trace. The inactive traces are less distracting. To return to the original style, select the feature again. In a graph that has more than one overlaid trace, click Graph > Fade Inactive Trace. 		

ltem	Description	
8	When the active graph contains more than one overlaid trace, inverts the second trace. This can make it easier to visually compare two similar traces. Select Invert Second Overlay again to return to the original view.	
9	 Replaces the graphs with a single trace that is the sum of all of the individual traces. In an active graph containing more than one overlaid trace, click Graph > Sum Graph Traces. 	
10	Creates a graph for each separate overlay. For example, if the user begins with a graph containing three overlaid traces and then selects this feature, the final result contains four panes: the original graph with the overlays and one graph for each of the individual data sets. a. In an active graph containing more than one overlaid trace, click Graph > Split Traces into Separate Panes .	
	The Number of Columns dialog opens.	
	b. Select the number of columns in the output.	
	The number of rows required is determined based on the number of rows and the number of overlaid traces.	
	c. Select the check box to open the panes in a new window. If the check box is not selected, then the panes are opened in the same window.	
11	Opens the Set Titles dialog. Use this option to manually change the titles of the traces.	
12	Opens the Color dialog. Use this option to set the color for the currently active graph trace.	
13	Opens the Set Trace Colors Using Titles dialog. When multiple graph traces are overlaid, the software uses default colors for the overlays. Use this option to set specific colors for traces for which the title contains specific text.	
14	 Creates a copy of the currently active graph data and then adds it to that graph. Use this feature to see the effect of a particular data processing operation. For example, if the user duplicates the data using this feature and then smooths one of the two traces, the resulting graph contains overlaid before and after views. In an active graph, click Graph > Duplicate Active Data. 	

ltem	Description
15	 Creates a copy of the currently active graph. Use this feature to see the effect of a particular data processing operation. For example, if the user duplicates the data using this feature and then smooths one of the two traces, before and after views in two separate graphs are visible. Link the X-axes so that zooming one graph causes the other to zoom automatically. In an active graph, click Graph > Duplicate Graph.
16	Opens the Offset Traces dialog. Use this option to create a three- dimensional stacked graph from a series of overlaid graph traces.
17	Removes the generated offsets from the TIC.

Use the Two-Pane Operation Tools

Prerequisite Procedures

• Open the Explorer workspace.

Use the icons along the right edge of panes to perform operations on two panes, the source pane and the target pane. Refer to the section: Table 6-2. In all cases, click the icon in the source pane and then drag it to the target pane.

Table 6-2 Two-Pane Tools

lcon	Name	Description
- -	Move Pane	Changes the relative positions of the panes. Shown in the top right corner of each pane. Click the icon in one pane and then drag it to the top, bottom, left, or right portion of a second pane. Depending on where the cursor is released, the first pane changes positions relative to the second. As the user drags the pane, one side of the second pane is highlighted in red to indicate where the first pane will be placed.
		Note: The user can also drag panes from one window to another.

lcon	Name	Description
+	Add Data	Sums two data sets together, point-by-point. The data from the source pane that was originally clicked is added to the target pane, the pane over which the dragged icon is released. The title of the modified pane updates to indicate that it has been modified.
		Note: Only two data sets of the same type can be added. For example, the user cannot add a spectrum to a chromatogram.
		Tip! If the target graph contains more than one overlaid trace, then by default, the source data is added to the active target data only. Hold the Ctrl key to add the source to all of the data sets in the target pane.
Subtra	Subtract Data	Subtracts the background from a mass spectrum. Similar to the Add Data icon except that the source data is subtracted from the target data.
		Tip! If the target graph contains more than one overlaid trace, then by default, the source data is subtracted from the active target data only. Hold the Ctrl key to add the source to all of the data sets in the target.
		Tip! Normally any data points for which the intensity in the source is greater than in the target are not kept. That is, negative Y-values are discarded. Hold the Shift key to keep the points with negative intensity.
8	Overlay Data	Overlays the active data in the source graph on the target graph. After the operation is completed, the target graph contains a new series with a copy of the target data.
		Tip! If the source graph contains more than one overlaid trace, then by default, only a copy of its active data is moved to the target graph. Hold the Ctrl key to overlay a copy of all of the data sets in the source graph on the target graph.

Table 6-2 Two-Pane Tools (continued)

Move Panes or Windows

Prerequisite Procedures

• Open Samples.

Click Window and then use the features in the Window menu.

Figure 6-13 Window Menu: Options

Window	
1 Graph Selection Window	Ctrl+₩
Vertical Mode Pane Layout	
3 Move Pane To New Window	
5 Tile Vertically 4 Tile Horizontally	

ltem	Description
1	Opens a window showing information for the selected region in the active graph. For example, the X-range of the selection, the intensity range of the selected points, and so on. If this window is already visible, then selecting the menu item closes it. Refer to the section: Show the Graph Selection Information.
2	Changes the layout of the information in the window from row format to column format.
3	Removes the currently active pane from its window and places it by itself in a new window.
4	Arranges any open windows that have not been minimized so that they are all beside one another in one row.
5	Arranges any open windows that have not been minimized so that they are all above or below one another in one column.

Perform a Gaussian Smooth

Prerequisite Procedures

• Open Samples.

Applies a Gaussian smoothing algorithm. This is a filter of a specified width where the weighting factors follow a Gaussian, or normal, function.

1. Click **Process > Gaussian Smooth**.

Figure 6-14 Gaussian Smooth Dialog

Gaussian Smooth	×	
Smoothing width:	points	
Process all overlays (otherwise active data only)		
Only show this dialog again if the shift key is down		
ОК	Cancel	

- 2. Type a value in the **Smoothing width** field. This is actually the width of the Gaussian function at half of its maximum height. The total width is larger because the calculation is carried out in the wings of the Gaussian. Fractional values are allowed in which case the half width of the Gaussian is less than one point.
- If there are multiple traces in the active graph, then select Process all overlays (otherwise active data only) to apply the operation to all of the traces.
 If the Only show this dialog again if the shift key is down check box is selected, then the selected action is always used unless the user holds the Shift key to change the option.
- 4. Click OK.

Threshold Data

Prerequisite Procedures

• Open Samples.

Removes any data points that have an intensity below the current threshold setting. Sets the threshold by dragging the blue arrow that is shown in the Y-axes of graphs.

 Click Process > Threshold Data. If the active graph contains overlaid series from different samples, then the Process All Overlays? dialog opens.

Figure 6-15 Process All Overlays? Dialog

Process All Overlays?	×	
Do you want to process all overlaid data sets or or active one?	ly the	
O All Overlaid		
 Active Only 		
Only show this dialog again if the shift key is down		
OK Cancel		

- 2. If the Process All Overlays? dialog opens, then follow these steps:
 - a. Do one of the following:
 - Select All Overlaid to generate overlaid TICs for all of the available samples.
 - Select Active Only to generate TICs only from the currently active sample.
 - b. Click OK.

If the **Only show this dialog again if the shift key is down** check box is selected, then the selected action is always used unless the user holds the **Shift** key to change the option.

Subset Data Using Graph Selection

Prerequisite Procedures

• Open Samples.

This feature is only available when a graph with exactly one selected region is active. Removes data points lying outside of the selected region. Use this feature to focus data processing on a subset of the entire data.

- 1. Make a selection in the graph.
- Click Process > Subset Data (using graph selection). If the active graph contains overlaid series from different samples, then the Process All Overlays? dialog opens.

Figure 6-16 Process All Overlays? Dialog

Process All Overlays?	×
Do you want to process all overlaid data sets or onl active one?	y the
◯ All Overlaid	
Active Only	
Only show this dialog again if the shift key is do	wn
OK Cancel	

- 3. If the Process All Overlays? dialog opens, then follow these steps:
 - a. Do one of the following:
 - Select **All Overlaid** to generate overlaid XICs or TICs for all of the available samples.
 - Select Active Only to generate XICs or TICs only from the currently active sample.
 - b. Click OK.

If the **Only show this dialog again if the shift key is down** check box is selected, then the selected action is always used unless the user holds the **Shift** key to change the option.

Baseline Subtract Chromatogram

Prerequisite Procedures

• Open Samples.

Removes a relatively slowly varying background from a chromatogram.

For each data point in the chromatogram, a window is centered at the corresponding X-value and the points with minimum intensity within the window to the left and right are found. A straight line is joined between these two points and the Y-value is calculated at the center of the window. This is the baseline that is removed from the data at that point.

1. Click **Process > Baseline Subtract Chromatogram**.

Figure 6-17 Baseline Subtract Dialog

Baseline Subtract	×	
Subtraction half window: 2.0	min	
Process all overlays (otherwise active data only)		
Only show this dialog again if the shift key is down		
ОК	Cancel	

- 2. Type a value, in minutes, in the Subtraction half window field.
- If there are multiple traces in the active graph, then select Process all overlays (otherwise active data only) to apply the operation to all of the traces.
 If the Only show this dialog again if the shift key is down check box is selected, then the selected action is always used unless the user holds the Shift key to change the option.
- 4. Click OK.

Offset Chromatogram

Prerequisite Procedures

• Open Samples.

Used to offset the time values of a chromatogram.

1. Click Process > Offset Chromatogram.

Figure 6-18 Offset Dialog

Offset	×		
Total offset: 0.000 min			
Process all overlays (otherwise active data only)			
Use incremental offset (to fan out overlays)			
Only show this dialog again if the shift key is down			
OK Cancel			

- 2. Type a value, in minutes, in the Total offset field.
- If there are multiple traces in the active graph, then select Process all overlays (otherwise active data only) to apply the operation to all of the traces.
 If the Only show this dialog again if the shift key is down check box is selected, then the selected action is always used unless the user holds the Shift key to change the option.
- 4. Select **Use incremental offset (to fan out overlays)** to spread the overlays apart in the time direction.
- 5. Click OK.

Centroid a Spectrum

Prerequisite Procedures

• Open Samples.

Creates a centroid of a mass spectrum, that is, replaces a profile spectrum with mass and intensity points for the detected peaks only.

1. Click Process > Centroid Spectrum.

Figure 6-19 Centroid Dialog

Centroid X			
Specify the metric for the centroid y-values:			
 Intensity 			
◯ Height			
🔿 Area			
◯ Intensity sum above 50%			
Process all overlays (otherwise active data only)			
$\hfill \Box$ Only show this dialog again if the shift key is down			
OK Cancel			

- 2. Select the metric to be used for the centroid process:
 - **Intensity**: For each peak, the centroid Y-value is the intensity of the largest data point comprising the peak.
 - **Height** : This metric is similar to the Intensity metric except that the intensity is subtracted by the baseline intensity when there is a baseline offset.

- Area: For each peak, the centroid Y-value is the total area of the peak. This is a true integral because the reported value depends on both the intensity profile and the width of the peak.
- Intensity sum above 50%: For each peak, the Y-value is the sum of the portion of the intensities comprising the peak which are above 50% of the peak apex intensity. This value is useful because it does not depend only on the intensity of a single data point, as the Intensity and Height metrics do, and it is not influenced by the edges of the peak which might be noisy or which might have interference.
- If there are multiple traces in the active graph, then select Process all overlays (otherwise active data only) to apply the operation to all of the traces.
 If the Only show this dialog again if the shift key is down check box is selected, then the selected action is always used unless the user holds the Shift key to change the option.
- 4. Click OK.

Export Data as Text

Prerequisite Procedures

• Open Samples.

Currently active spectrum or chromatogram is saved to a tab-delimited text file.

 Click File > Export > Data as Text. If spectral data is exported, then the Add Zero Intensity Points for Export dialog opens.

Figure 6-20 Add Zero Intensity Points for Export Dialog

- 2. If the Add Zero Intensity Points for Export dialog is open, then do one of the following:
 - Click No, leave data as-is to exclude points with zero intensity from the exported file.

• Click **Yes, add points with zero intensity** to include points with zero intensity in the exported file.

Then click OK.

- 3. Type a file name for the exported file.
- 4. Click Save.

Export the Peak List as Text

Prerequisite Procedures

• Open Samples.

The user can save the peak list for the currently active spectrum or chromatogram to a tabdelimited text file. This file contains information such as the centroid X-value (mass or time), peak area, height, and so on.

- 1. Click File > Export > Peak List as Text.
- 2. Type a file name for the exported file.
- 3. Click Save.

Print Data

Prerequisite Procedures

- Open Samples.
- 1. Click **File > Print** and then select the required option. The Print dialog opens.
- 2. Select a printer, and then click **Print**.

Reset Options

Prerequisite Procedures

• Open the Explorer workspace.

The user can reset all of the options in the Explorer workspace to the default values. This includes the options described in the previous section, as well as processing options. Resetting the options only affects the currently logged-in Windows user, not other users of the same computer.

- 1. Click **Edit** > **Reset Options**. A confirmation dialog is shown.
- 2. Click OK.

Set Options

Prerequisite Procedures

• Open the Explorer workspace.

Use the features on each tab as required.

1. Click **Edit** > **Options**.

Figure 6-21 Options Dialog: Graph Appearance Tab

Options					×
Graph Appearance	Peak Labeling & Finding	Auto Processing	XIC	Filtering	
Title font:	Set Autor	natic label font:	Set]	
Axis caption font:	Set Defa	ult caption font:	Set]	
Axis label font:	Set	Set all fonts to def	fault]	
Trace colors:	Set				
Line width:	1 ~				
Use thicker lin	ne for active series (whe	n multiple series a	re overlai	d)	
Plot centroid s	spectra using 'triangles' (to show peak width	1)		
		ОК	Cano	cel	

- 2. Set the options on each tab, as applicable. For descriptions of the options, refer to the document: *Help System*.
- 3. Click OK.

Analytics Workspace

Access to features in this workspace is controlled by the role assigned to the user. Refer to the document: *Laboratory Director Guide*.

Note: The controlled ways to output data from the Analytics workspace are: exporting Results Tables, transferring data to a LIMS, and reporting. The other sources of output data, such as copying and pasting from Results Tables, are not controlled. Do not use uncontrolled output methods for regulated purposes.

The grouping of numbers is not supported in the Analytics workspace. Do not group numbers in text boxes, for example, in the integration parameters, or grid such as a Results Table.

Processing methods include the criteria used to quantitate the peaks selected for integration.

Reviewers should review the data according to the criteria of peak integration and data acceptance in the laboratory standard operating procedures (SOPs).

SCIEX OS can process data while it is being acquired by SCIEX OS or the Analyst software. Any acquired samples can be added to the Results Table. To add samples that are being acquired, wait until acquisition is complete and then add them to the Results Table.

Define the Default Processing Parameters for the Project

This option sets the default peak-finding parameters that are used when creating a processing method. If there are more than a few components, then set the default values based on the chromatography so that they do not need to be adjusted individually for every component. However, no one set of parameters is likely to be ideal for all of the components, so it might be necessary to adjust some of the parameters individually for some of the components.

1. In the Analytics workspace, click **Projects > Project default settings**.

Note: Make sure that the correct project name is selected in the status panel.

The Project Default Settings dialog opens.

- 2. On the Quantitative Processing page, perform these steps:
 - a. Select a signal-to-noise algorithm from the **Signal to Noise Algorithm** list.
 - b. Select an integration algorithm from the **Integration Algorithm** list and then set the default parameters for quantitative processing.

For descriptions of the parameters, refer to the document: Help System.

 On the Qualitative Processing page, select a library search algorithm from the Library Search Algorithm list and then set the default parameters for qualitative processing.
 For information about the algorithms, refer to the document: *Help System*. 4. On the Mass Reconstruction Processing page, select an integration algorithm from the **Integration Algorithm** list and then set the default integration parameters for mass reconstruction.

For descriptions of the parameters, refer to the document: *Help System*.

Note: Only the MQ4 and Summation algorithms are available.

- 5. Click Save.
- 6. Click Close.

Work with Workspace Layouts

Use the workspace layouts feature to save customized workspace layouts in the Analytics workspace. The customized layout is saved with the Results file, and automatically applied when the file is opened. This saves users time when they are analyzing results. A saved workspace layout can be applied to other Results files. It can also be set as the default workspace layout for a project, which is applied whenever a Results file in that project is opened. Workspace layouts can be saved anywhere, including on local networks.

Users can change between different saved layouts to perform different types of data analysis on their Results files.

Note: All workspace layouts are saved with the qlayout file name extension.

Note: No settings that change or alter data directly are preserved in a workspace layout.

The following table lists the UI elements that are saved with workspace layouts.

 Table 6-3 UI Elements Saved with Workspace Layouts

Saved UI Elements		
The Qualify for Rules Filters check box.		
Qualifying row filters.		
Table sort choice.		
Highlighted rows and columns.		
Table display settings.		
Column filters.		
Note: When the workspace layout is applied to a different Results Table, column filter settings are applied, if possible. If a filtered column does not exist in a Results Table, or if a filtering option is not applicable, then the setting is not applied.		

Pane	Saved UI Elements		
Views Menu	The Show hidden pane setting.		
	• Whether the Tabbed view option is selected.		
Samples or	 Whether the Samples or Components and Groups list is open. 		
Groups	 Whether specific samples or components are selected to be shown in a Results Table. 		
	 In the Samples list, the setting for Options > Synchronize Sample Selection. 		
	 In the Components and Groups list, selection of All Internal Standards, All Analytes, All Components, and Groups (where applicable) options. 		
	 In the Components and Groups list, the setting for Options > Show IS 		
Peak Review	 Whether the Peak Review pane is open and if it is docked. 		
	The current View.		
	 Any selected Options, including the Peak review display settings options and the XIC Graph Title option. 		
Calibration Curve	Whether the Calibration Curve pane is open.		
	 The Show excluded standards, Show quality controls, Show legend, Use percent Y-axis, and Log-log plot settings in the Options menu. 		
Metric Plot	Whether the Metric Plot pane is open.		
	Link menu settings.		
	Regression dialog settings.		
	 The Display "N/A" as 0.0, Show sample names, Show legend, Use percent Y-axis, Start Y-axis at 0, and Connect with lines settings in the Options menu. 		
Statistics Pane	Whether the Statistics pane is open.		
	Active Sample grouping selections.		
	Active Metric selections.		

Table 0-5 Of Lieffielits Saved with workspace Layouts (continued)

Save the Current Workspace Layout

- 1. Open the Analytics workspace.
- 2. Open a Results Table.
- 3. Customize the workspace layout as required.
- Click Views > Save current layout. The Save Workspace Layout As dialog opens.
- 5. Type a name for the workspace layout and then click **Save**.

Apply Another Workspace Layout to the Current Project

Applying different workspace layouts to the current Results file allows the user to quickly perform different types of results analyses on the same data.

- 1. Open the Analytics workspace.
- 2. Open a Results file.
- Click Views > Apply different layout to current results. The Apply a Workspace Layout dialog opens.
- 4. Click **Browse**, select a layout, and then click **Open**. The Apply a Workspace Layout dialog shows a preview of the selected workspace layout.
- 5. Click OK.

Tip! Apply recently used workspace layouts by clicking **Views > Recent layouts** and selecting a layout.

Set the Current Workspace Layout as Project Default

Setting a project default workspace layout preserves a layout between multiple sessions or users. It also makes any new Results files created within the project open with the project default workspace layout.

- 1. Open the Analytics workspace.
- 2. Open a Results file.
- 3. Customize the workspace layout to suit the project.
- Click Views > Set current layout as project default. The Default Workspace Layout for the Project dialog opens.
- 5. Type a name for the layout in the **Default layout name** field and then click **OK**.
- 6. Click **Results > Save**.

Set Project Secure Export Settings

Only a user who has been assigned to the Administrator role can perform this task.

If this option is selected, then data in the text file is encrypted during export. Set a password to enable encryption.

1. In the Analytics workspace, click **Projects > Project secure export settings**.

Figure 6-22 Secure Export Settings Dialog

Secure Export Settings		
Project Root:	C:\SCIEX OS Data\	
Project Name:	Example	
Encrypt Results	Table when exporting for this project	
Password:		
Confirm Password:		
ОК	Cancel Help	

- 2. Select the Encrypt Results Table when exporting for this project check box.
- 3. Type a password in the **Password** field.
- 4. Type the password again in the **Confirm Password** field.
- 5. Click OK.

Enable the Project Modified Peak Warning

By default, this option is not selected. When it is selected, if a user changes a chromatogram in a Results Table and then saves the changes, a warning message indicates that a change has been made. The user can choose to continue saving or return to the Results Table.

In the Analytics workspace, click **Projects > Enable project modified peak warning**.

Create a Processing Method

Processing methods contain quantitative and qualitative settings for data processing. The Nontargeted workflow is used for unknown components.

Tip! To edit an existing processing method, click **Process Method > Open**.

1. Open the Analytics workspace.

2. Click **Process Method** > New.

Tip! To edit the processing method for the current Results Table, click **Process Method** > **Edit embedded method** and then continue with step **3**.

3. On the Workflow page select at least one workflow and the reference samples. For descriptions of the fields on this page, refer to the document: *Help System*.

Tip! To use the mass reconstruction workflow, select Quantitation only.

- 4. Select the Components page and then perform these steps:
 - a. If applicable, select the mass reconstruction workflow by clicking **Options** > **Mass Reconstruction** and then clicking **Yes** in the confirmation dialog.
 - b. Complete the components table. For descriptions of the fields in this table, refer to the document: *Help System*.

Note: The Mass Reconstruction workflow is only available when the integration algorithm is set to **MQ4** or **Summation**.

Tip! If a group is defined in the Components table, then the user can choose to sum the ions in the group, even if the precursor ion and the experimental index are different for the transitions. The summed ions are not shown in the table but are shown on the Integration page and in the Results Table as *group name* > Sum. This feature is useful for the quantitation of proteins and peptides.

Tip! If the retention time of the components is not known, then set the **Retention Time Mode** for a mass or chemical formula to **Find** *n* **peaks**, where *n* is 1, 2, 5, 10, or all. The software identifies the specified number of features with the greatest peak area, assigns the appropriate retention time, and then performs a targeted peak processing workflow. When processing is complete, the embedded method for the Results Table can be saved as a targeted method.

Tip! To import components or components and integration parameters from a text file, use the appropriate command on the **Import** menu. If the component information does not contain concentration units, then the software uses the **Concentration units** defined on the Project Default Settings dialog.

Note: Integration parameters cannot be imported from processing methods that use the AutoPeak integration algorithm.

Note: Integration parameters can be imported from Analyst software quantitation methods. Analyst software parameters are mapped to the corresponding SCIEX OS parameters, and the project default settings are used for any parameters that cannot be mapped. **Note:** Integration parameters can be imported from MultiQuant software quantitation methods that do not use the SignalFinder algorithm. For MQ4 methods, the **S/N Integration Threshold** is changed from 0, the default in the MultiQuant software, to the project default. The parameters for the MultiQuant software are mapped to the corresponding parameters for SCIEX OS.

- 5. Select the Integration page and then perform these steps:
 - a. Select the integration parameters for each component. For descriptions of the fields on this page, refer to the document: *Help System*.

Tip! To define the rules for automatic outlier removal, click **Options** > **Remove Outliers Automatically**. Refer to the document: *Help System*.

b. (Optional) To view the noise region, click Options > Show Noise Regions. Refer to the section: Work With Noise Regions.

Note: Show Noise Regions is only shown when signal to noise algorithm is set to Standard Deviation or Peak to Peak.

- 6. (If applicable) Select the Library Search page and then define the library search parameters. For descriptions of the fields on this page, refer to the *Help System*.
- 7. Select the Calculated Columns page and then define any custom formulas to be used in custom calculated columns. For descriptions of the fields on this page, refer to the *Help System*.

Note: For more information about calculated columns, refer to the section: Calculated Columns.

8. Select the Flagging Rules page and then select the rules to be used to flag results in the Results Table. For descriptions of the fields on this page, refer to the document: *Help System*.

Optionally, create custom flagging rules, or customize the following values for the predefined rules:

- Acceptance criteria for the following:
 - Accuracy of standards and quality controls
 - Calculated concentration range for unknown samples
 - Peak integration
- Traffic light settings for mass accuracy, retention time confidence, isotope match, library score, and formula finder score
- Traffic light settings for ion ratio acceptance

Ion ratio is the peak response ratio, that is, the area or height of the qualifier and quantifier.

Tip! To import flagging rules from a text file, click Import.

- 9. Select the Formula Finder page and then select the formula finder settings. For descriptions of the fields on this page, refer to the document: *Help System*.
- 10. (If the Non-targeted workflow is selected) Select the Non-targeted Peaks page and then define the Non-targeted search parameters. For descriptions of the fields on this page, refer to the document: *Help System*.
- 11. Click Save.

Tip! If a Non-targeted method is created, then the current project default parameters are used for peak integration, and those parameters are saved in the processing method file. If the processing method contains the targeted analytes, then the customized integration parameters for the targeted components will not affect the Non-targeted peak integration. If the user changes the project default parameter later, then the changed parameter will not impact the existing Non-targeted method, which still contains the parameters at the time the method was created. Only the newly created non-targeted method uses the changed parameters.

Process Data

- 1. Open the Analytics workspace.
- 2. Click **Results > New**.
- 3. On the Process New Results dialog, use the arrows (and) to select samples to be processed.
- 4. Select a processing method in one of the following ways:
 - Click Browse and then select a processing method and click Open.
 - Click **New** and then create the new processing method. Refer to the section: Create a Processing Method.
- 5. (Optional) Click **Edit** to edit the processing method. Refer to the section: Create a Processing Method.
- 6. Select a comparison sample for non-targeted workflows.
- 7. Click Process.

Note: In Non-targeted analysis, automatic grouping by adduct is performed. The grouping algorithm assigns adduct modifiers for compounds with the same retention time if the mass difference between them is associated with a common adduct. This feature helps prevent the investigation of duplicate compounds with different charge adducts.

If the data contains custom batch columns that have the same name as predefined Results Table columns or existing formulas, then a warning message is shown. Click **OK** to continue. An underscore (_) is added at the beginning of these column names.

- 8. To show or hide sample types, click the filter icon (\mathbf{V}) on the **Sample Type** column and then select or clear the required check boxes.
- 9. To set the acceptance filters, click the filter icon (\mathbf{V}) on any of the acceptance columns, select **Filter by Flag**, and then select **Pass** or **Fail**.

Note: The Acceptance columns include Accuracy, Accuracy Acceptance, Asymmetry Factor, Calculated Concentration, Concentration Acceptance, Integration Acceptance, Quality Retention Time Delta (min), Retention Time Error (%), and Total Width.

10. To select qualitative confidence filters, click the **Confidence** traffic light and then select or clear the required check boxes.

Note: After the Results Table is generated using the AutoPeak algorithm, if the user changes the XIC width and the expected RT, then the data will be reprocessed using the previous algorithm model unless the user updates the model using the new XIC width and expected RT values.

Tip! To apply additional custom filters, select Text Filters.

Tip! To reapply the filter after a change to the Results Table, such as a change to the area

count, click Reapply Filter (

- 12. Save the Results file in one of the following ways:
 - Click **Results** > **Save**.
 - To prevent changes to the Results Table, click **Results > Lock results file and save**.

Add Samples

Prerequisites

• In the Analytics workspace, a Results Table is open.

This option adds additional samples to a currently active Results Table.

- 1. Click More > Add samples.
- 2. In the Select Samples dialog, select the required samples.
 - The Available pane shows the subfolders, wiff2 files, and samples available in the **Data** folder for the current project.
 - Expand individual folders to see any subfolders or wiff2 files. If the wiff2 file is expanded, then it opens to show the available samples.

-

- Use the arrows to add (
- Select samples in the following ways:
 - Double-click an individual sample.
 - Select a sample or data file and then click
 - Drag a sample or data file from the left pane to the right pane.

Press Shift or Ctrl to select multiple files or samples before moving them.

3. Click OK.

A progress bar is shown while the new samples are integrated and added to the existing table.

Customize the Results Table

Prerequisites

• In the Analytics workspace, a Results Table is open.

Select the numeric format and the columns to be shown in the Results Table. The column settings can be applied to all of the Results Tables in the project.

Note: Some critical columns, such as **Sample Name**, **Sample ID**, **Barcode**, and so on, should not be hidden when users customize the Results Table column settings.

Tip! If column names are truncated, then move the cursor over the field to show the column name in a tooltip.

1. Click More > Table display settings.

The Results Table Display Settings dialog opens. For a description of the columns in the Results Table, refer to the section: Results Table Columns.

Res	Results Table Display Settings				
Projec	:t: Default				
Show	and hide specific columns in	n the result:	s table		
Co	olumn Groups:			\bigcirc	5
A	All Columns 10	•	Impo	rt Export	
	0	G			
Γ	Column Name	Visible	Number	LIS Supported	<u>^</u>
1	Accuracy	V	0.00	V	E
1	Accuracy Acceptance	V			
1	Acq. Method Name				
1	Acquisition Date & Time				
1	Actual Concentration	\checkmark	0.00		
1	Area	V	0.000e0	V	
1	Area / Height		0.00		
1	Area Ratio		0.000e0	V	
1	Asymmetry Factor		0.00		
1	Barcode				
1	Baseline Delta / Height		0.000e0		
(Calculated Concentration	V	0.000e0		
(Comparison				
(Component Comment				
(Component Group Name	\checkmark			
(Component Index				
(Component Name	\checkmark		[♥]	-
0	Save as project defau	lt settings	OK	8 Cancel	٩

Item	Description
1	Click to select a column settings file previously saved using the Export button. The dialog fields are updated to use the information from the selected file.
2	Click to save the current dialog settings to a file. Use the Import button to import and use these settings. This option lets the user switch between different column layouts.
3	The name of the columns, shown in alphabetical order.
	Note: This list also includes any calculated columns defined in the processing method that was used to create the Results Table.
4	A checkmark indicates that the column is visible.
5	For numerical fields, use the format 0.00 for non-scientific notations and use the format 0.00e0 for scientific notations. Change the decimal points to indicate the precision of the numbers that are shown. Only a period "." can be used as a decimal separator.
	Note: Grouping of numbers is not supported.
6	The selected LIS Supported rows are predefined by the LIMS and the column selections cannot be changed.
7	Click to use the column settings for future Results Tables.
8	Click to apply the changes and then close the dialog.
9	Click to abandon the changes and then close the dialog.
10	Select a category of Results Table columns. Users can filter the columns shown in the Results Table based on the selection. Selecting a category helps the user to easily find a column in the Results Table.

2. Select or clear the check box in the **Visible** column, as required.

Note: In addition to the columns described in the section: Results Table Columns, the Results Table can contain custom calculated and text columns. Calculated columns are identified with an asterisk.

- 3. (Optional) In the **Number Format** column, change the format to integer or scientific notation.
- 4. (Optional) In the **Number Format** column, change the number of decimal points to be shown.
- 5. Click OK.

The new settings are applied to the Results Table. The settings are also saved and applied when a new Results Table is created or a previously saved Results Table is opened again.

Tip! Use the header row of the Results Table to adjust the column widths and column order. Drag the header border to change the width. Drag the column header to another location in the Results Table to change the column order. Click the filter icon (\mathbf{Y}) on a column header to apply a filter to the column. When the **Export** button is used to export a Results Table, the column width, order, and filter settings are saved in the exported file.

Create a Report

Prerequisites

• In the Analytics workspace, a Results Table is open.

Tip! To select the analytes to be included in a report, use the **Reportable** column in the Results Table. Refer to the section: Results Table Columns.

- Click Reporting > Create Report and Save Results Table. The Create Report dialog opens.
- 2. Select a template from the **Template name** list.
- 3. Select a report format.
- 4. To change the file name and location, click **Browse**, navigate to a different location, type a **File name**, and then click **Save**.

```
Note: By default, reports are saved in ProgramData\SCIEX\Analytics\Reporter\Reports.
```

- 5. Click the Create an individual report for each sample check box, if required.
- 6. (Optional) Select a different logo for the report:
 - a. Click Replace Logo.
 - b. Use the options in the Replace Logo dialog to modify the logo as required.
 - c. Click Save.
 - d. Click Cancel.
- 7. Click **View Pages** to view the report layout.
- 8. Click Create.

Tip! To report the selected results using a template such as Per Sample Quant, Per Sample Qual, Per Sample Visible Rows Using Visible Analytes, or Positive Hits Qual, use filters or hide the unwanted rows in the Results Table.

Tip! Click the example in the **Template View** in the Create Report dialog to view the report template layout. To view a specific template, the user must have a jpg file with the same name as the template in addition to the suffix [Snapshot_X], where X is the snapshot number in the sequence. Do not use spaces between the file name and the suffix.

For example, All Peaks Qual.docx template would be named: All Peaks Qual[Snapshot_1].jpg All Peaks Qual[Snapshot_2].JPG All Peaks Qual[Snapshot_3].jpg

Export and Save a Results Table

Prerequisites

• In the Analytics workspace, a Results Table is open.

Tip! To select the analytes to be exported, use the **Reportable** column in the Results Table. Refer to the section: Results Table Columns.

1. Click **Reporting > Export results > Export and save Results Table**.

The Export dialog opens.

- Select the options as required.
 For descriptions of the options, refer to the document: *Help System*.
- 3. Click OK.

Export Results Table – Metric

Prerequisites

• In the Analytics workspace, a Results Table is open.

Note: The manufacturer assumes no responsibility or contingent liability, including indirect or consequential damages, after data has been exported from the Analytics workspace.

Exporting Results Tables is one of the controlled methods for data output in the Analytics workspace.

Operating Instructions—Processing

This feature is used to create a tab-delimited text file containing the information from the active Results Table. Information is exported for all samples and either all components or just the visible components for the one selected metric or field.

1. Click **Reporting > Export results > Results Table - Metric**.

The Export Metric dialog opens.

- 2. Select the column to export in the **Metric** field, and then set the options. Refer to the document: *Help System*.
- 3. Click OK.

Transfer Results to a Watson LIMS

Prerequisites

- A Results Table is open and locked.
- The Watson LIMS software is open.

Note: A subset of the columns in the Results Table is transferred, including some hidden columns, and some that are not designated as **Reportable**.

- Click Reporting > Initiate Transfer to Watson LIMS. The transfer dialog opens.
- 2. In the Watson LIMS software, import the data.
- 3. In the transfer dialog in SCIEX OS, do one of the following:
 - If the transfer was successfully completed, then click **Confirm**.
 - If the transfer was not successfully completed, then click **Decline**.

Transfer Results to Another LIMS

Prerequisite Procedures

- Configure the LIMS in the Configuration workspace. Refer to the section: Select Laboratory Information Management System (LIMS) Settings.
- Open a locked Results Table.

Tip! To select the analytes to be exported, use the **Reportable** column in the Results Table. Refer to the section: Results Table Columns.

1. Click **Reporting > Transfer Results to LIMS**.

The LIMS Transfer dialog opens.

- 2. Select a template from the **Template** list.
- 3. Click Transfer.

Work With Results Tables

Results Tables summarize the calculated concentration of an analyte, as well as the qualitative analysis results such as library hits, formula finder results, and so on, in each unknown sample based on the calibration curve. Results Tables also include the calibration curves, as well as statistics for the results. The user can customize the Results Tables and view the Results Tables in different layouts.

Note: Results Table columns with an asterisk (*) are custom text or calculated columns.

The data from a Results Tables can be exported to a txt file for use in other applications, such as Microsoft Excel. The user can export all of the data in the Results Table or just the data in the visible columns.

Tip! If multiple sessions of Results Tables have been tiled either vertically or horizontally, then click **Views > Reset layout** to return the Results Tables to their original layout.

Use the right-click menu to edit the Results Table rows. To show this menu, click the right mouse button anywhere in the Results Table.

Figure 6-24 Right-Click Menu

Сору	Ctrl+C
Paste	Ctrl+V
Copy Entire Table	
Fill Down	Ctrl+D
Select All Rows	
Apply Current Analyte's Actual Concentration	ns to All
Apply Current IS's Actual Concentrations to A	All

Table 6-4 Right-Click Menu Commands

Label	Description
Сору	Use this option to copy the current data to the clipboard.
Paste	Use this option to paste data from the clipboard in the current view.
Copy Entire Table	Use this option to copy the entire table to the clipboard.
Fill Down	(Components) Use this option to replicate the information in the first selected row to all of the subsequent selected rows.

Label	Description
Select All Rows	Use this option to select all of the rows in the currently active Results Table. This is useful if the user subsequently wants to apply a command, such as Copy , that operates on the selected rows.
Apply Current Analyte's Actual Concentrations to All	(Analytes) If there is more than one analyte and all of the analytes are present in these samples at the same concentration, then use this option to provide a shortcut for setting the actual concentration field for all of the analytes for the standard samples. To use this feature:
	1. Use the Components and Groups List to show only one specific analyte in the table. Refer to the section: Components and Groups List.
	 (Optional) Filter the Sample Type column to view only standard samples.
	 Specify the actual concentration for the analyte, either by typing in the cells or by selecting the column and pasting text in it.
	4. Select Apply Current Analyte's Actual Concentrations to All.
	Return to viewing all of the components and sample types, as required.

Table 6-4 Right-Click Menu Commands (continued)

Label	Description		
Apply Current IS's Actual Concentrations to All	(Internal standards) If there is more than one internal standard all of the internal standards are present in these samples at th same concentration, then use this option to provide a shortcut for setting the actual concentration field for all of the internal standards for the standard samples. To use this feature:		
	 Use the Components and Groups List to show only one specific internal standard in the table. Refer to the section: Components and Groups List. 		
	 (Optional) Filter the Sample Type column to view only standard samples. 		
	 Specify the actual concentration for the internal standard, either by typing in the cells or by selecting the column and pasting text in it. 		
	4. Select Apply Current IS's Actual Concentrations to All.		
	Return to viewing all of the components and sample types, as required.		

Table 6-4 Right-Click Menu Commands (continued)

Results Table Filters

Use the fields at the top of the Results Table to view and filter content.

Figure 6-25 Filtering Controls

42 of 189 rows Filters: 3 Vualify for Rules Filters		/₀₂ "C	ilk 🛛	C_H_ •	C 7
	Define a qua	lifying row:			
		✓			
	Y Ion ra	tio			

Table 6-5 Results Table Filters

Label	Description
<i>x</i> of <i>y</i> rows	Shows the number of visible rows (x) out of the total number of rows (y) .
Filters	Shows the number of columns to which filters are applied.

Label	Description
Qualify for Rules Filters	Toggles the view of the Results Table between the rows that match the acceptance criteria filters or confidence traffic filters and those that do not. Acceptance criteria and confidence traffic lights are applied in the processing method.
Reapply Filter	Reapplies the filter after a change to the Results Table, such as a change to the area count.
	Note: All filters are automatically reapplied when another filter is added or changed.
Clear	Clears all filters.

 Table 6-5 Results Table Filters (continued)

Results Table Columns

Note:

- Columns with an asterisk (*) are custom text columns, calculated columns, or columns created as a results of a combined flagging rule.
- Columns with names that begin with an underscore (_) are custom batch columns that have the same name as a predefined Results Table column or formula.
- The **Format** column indicates how the field is validated in formulas.
- In columns that contain numbers, users can change the number format and the number of significant digits. Choose between **Decimal**, **Significant Digits**, or **Scientific Notation** in the **Number Format** column and then type the number of significant digits in the **Number Format Precision** column in the Results Table Display Settings dialog.

Label	Description	Format	LIS Supported
Accuracy	Shows the accuracy of standards and quality control (QC) samples. For other sample types, this value is set to N/A . For standards of known concentration, the accuracy of standards and QC samples is defined as 100% × (Calculated Concentration)/(Actual Concentration).	Number	Y

Label	Description	Format	LIS Supported
Accuracy Acceptance	Shows the acceptance status of the accuracy.	Text	N
Acq. Method Name	Shows the name of the acquisition method used to acquire the sample.	Text	Y
Acquisition Date & Time	Shows the date and time at which the sample was acquired.	Text	Y
Actual Concentration	For standards and QC samples, shows the expected known concentration.	Number	Y
Adduct/ Charge	Shows the adduct or charge state of the compound. In the targeted workflow, this value is set by the user. In the non-targeted workflow, this value is automatically set by the software if grouping by adduct is enabled.	Text	Ν
Area	Shows the detected peak area. If no peak was detected, then this value is set to N/A .	Number	Y
Area / Height	Shows the detected peak area divided by the height. If a peak was not detected, then this value is set to N/A .	Number	N
Area Ratio	For analytes that use an internal standard, shows the ratio of the analyte Area to the IS Area . For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Y

Label	Description	Format	LIS Supported
Area Ratio of comparison	Shows the area ratio of the sample/control sample.	Number	Ν
	 If no peak is found in the control, then the value is N/A. 		
	• If no peak is found in the sample, then the value is 0.		
	• If every peak in the sample is below the Area Ratio Threshold , then the value is N/A .		
	• If a comparison sample is not used, then the value is No control sample .		
	• For the control sample, the area ratio for found peaks is always 1.		
	Applicable to qualitative workflows only.		
Asymmetry Factor	Shows the distance from the center line of the peak to the back slope, divided by the distance from the center line of the peak to the front slope, with all of the measurements made at 10% of the maximum peak height.	Number	Y
AutoPeak Asymmetry	Shows the ratio of the asymmetry of the integrated peak to the symmetry expected based on the model. A ratio of 1 indicates a good fit. If the value is not 1, then the ion source might be saturated, or the integration might not be correct.	Number	N
	Applicable only to processing methods that use the AutoPeak integration algorithm.		
Label	Description	Format	LIS Supported
--	--	--------	------------------
AutoPeak Candidate Model Quality	Shows the suitability of the peak for use in the creation of a peak model. If the value is significantly greater than 1, then the sample used to create the quantitation method is unsuitable. Use a peak with a larger response to create the model, and then apply that peak to all samples. Applicable only to processing methods that use the AutoPeak integration algorithm.	Number	Ν
AutoPeak Group Confidence	Shows the probability that the group of real peaks is integrated and that the integration does not include a false positive noise peak. Applicable only to processing methods that use the AutoPeak integration algorithm.	Number	Ν
AutoPeak Integration Quality	Shows the quality of the data. The quality is represented as a value from 0 to 1. If the quality is less than 0.6, then investigate the integration further. Applicable only to processing methods that use the AutoPeak integration algorithm.	Number	Ν
AutoPeak Model Source	Shows the names of the samples and components that were used for peak modeling. If the component used for modeling is not the same as the component that was integrated, then review the model to determine whether it is appropriate. Applicable only to processing methods that use the AutoPeak integration algorithm.	Number	Ν

Label	Description	Format	LIS Supported
AutoPeak Num Peaks	Shows the number of adjacent convoluted peaks that were detected by the algorithm. Applicable only to processing methods that use the AutoPeak integration algorithm.	Number	Ν
AutoPeak Peak Width Confidence	Shows the level of confidence in the peak width. A value of 1 indicates that the actual peak width and the expected peak width are equal. A value greater than 1 indicates that the actual peak width is greater than the expected peak width. A value less than 1 indicates that the actual peak width is less than the expected peak width, or that the peak is broader because of a change in chromatographic conditions. Applicable only to processing methods that use the AutoPeak integration algorithm.	Number	Ν
AutoPeak Saturated acc	If the Saturation correction option was used and the corresponding peak was saturated, so that the fitted model extends above the peak, then this field shows Yes . Otherwise, the column is blank. If the accuracy and %CVs for samples at higher concentrations are not within acceptable ranges, then adjust the Saturation correction . Applicable only to processing methods that use the AutoPeak integration algorithm.	Text	Ν

Label	Description	Format	LIS Supported
Barcode	Shows the unique ID for a sample. The unique ID is initialized from the value originally specified in the batch used to acquire the data.	Text	Y
	The Barcode can contain up to 20 characters. The Barcode cannot contain any of these invalid characters: \ / : * ? " < > = or characters 0 to 31 from the ASCII table.		
Baseline Delta/ Height	Shows the absolute value of the difference between the height of the baseline, at the start of the peak and the end of the peak, and the actual peak height. Values greater than 0.1 indicate that the baseline might not have been integrated correctly and that the peak should be reviewed.	Number	Ν
Calculated Concentration	For standards of known concentration, shows the value of the back-calculated concentration from the calibration curve. Regression equations describe how the regression is performed for the various regression types and weighting.	Number	Y
Combined Score	(Optional) Shows a single number score that can be used for relative comparison purposes. Applicable to qualitative workflows only.	Number	Ν
Comparison	Shows the components in the comparison sample.	Number	Ν
Component Comment	Shows an arbitrary comment for the analyte or internal standard that applies to all of the samples.	Text	Ν
Component Group Name	Shows any group name associated with the analyte or internal standard.	Text	N
Component Index	Shows the index of the analyte or internal standard in the original processing method.	Number	Y

Label	Description	Format	LIS Supported
Component Name	Shows the name of the analyte or internal standard.	Text	Y
	This column is always visible in the Results Table. In the Column Settings dialog, the check box is not available.		
	The Component Name can contain up to 50 characters.		
	Note:		
	• The Component Name can only be changed in the processing method and not in the Results Table.		
	 This column is mandatory for a Laboratory Information Management System (LIMS) transfer. 		
Component Type	Shows the analyte type: Quantifier , Qualifier , or Internal Standard .	Text	N
Conc. Units	Shows the concentration units.	Text	Y
Concentration Acceptance	Shows the acceptance status of the calculated concentration.	Number	Ν
Concentration Ratio	For analytes that use an internal standard, shows the ratio of the Actual Concentration to the IS Actual Concentration . For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν
Difference from Average Sample Time	Shows the difference between the analysis time for this sample and the average analysis time for all samples.	Number	N
Dilution Factor	Shows the factor by which the sample has been diluted. This factor is used in the calculation of the calibration curve.	Number	Y
End Time	Shows the ending retention time of the detected peak, in minutes.	Number	Y

Label	Description	Format	LIS Supported
End Time at 10%	Shows the time, in minutes, along the back side of the peak where the intensity is at 10% of the peak height.	Number	N
End Time at 5%	Shows the time, in minutes, along the back side of the peak where the intensity is at 5% of the peak height.	Number	Ν
Expected Ion Ratio	Shows the expected ion ratio for unknown, QC, and standard samples. For each component in a group, the Expected Ion Ratio is the average of the ion ratios of its standards. A standard	Number	Y
	 Expected Ion Ratio of the component if these conditions apply: 1. The peak area is N/A. 2. The Use column is not selected. 		
Expected RT	Shows the original expected retention time from the processing method, in minutes.	Number	Y
Expected MW	Shows the original expected molecular weight, from the processing method, in Da. Applicable to mass reconstruction workflows only.	Number	Y
Formula	(Optional) Shows a valid chemical formula. If the chemical formula is invalid, then it is not retained by the software. If the chemical formula is valid, then the Mass (Da) and Isotope columns are auto- populated.	Text	Y

Label	Description	Format	LIS Supported
Formula Confidence	Shows, the level of confidence in the Formula Finder Score , as a percentage. It is calculated based on:	Text	Ν
	• How well the current MS spectrum fits the theoretical spectrum for the compound, based on mass.		
	 How well the acquired MS/MS spectrum fits the MS/MS spectrum found in the LibraryView software database. 		
	The MS spectrum score has twice the weight of the MS/MS spectrum score.		
	Applicable to qualitative workflows only.		
Formula Finder	Shows the single number score that can be used for relative comparison purposes. The value is can be updated using data from the Peak Review Formula Finder Results Table.	Number	N
	Applicable to qualitative workflows only.		
Formula Finder Results	(Optional) Shows the best match of the formula finder results.	Text	Ν
	Applicable to qualitative workflows only.		
Formula Finder Score	(Optional) Shows a single number score that can be used for relative comparison purposes.	Number	Y
Found at Fragment	(Optional) Shows the best requested Fragment Mass (Da) at which matching spectra were found.	Number	Y
	Applicable to qualitative workflows only.		

Label	Description	Format	LIS Supported
Found at Mass	(Optional) Shows the best requested Extraction Mass (Da) at which the matching spectra were found. Applicable to qualitative workflows only.	Number	Y
Fragment Mass	(Optional) Shows the fragment mass, as specified in the method. The precursor of the fragment is extracted from the MS/MS in the Extraction Mass (Da) column. When provided, this value must be numeric.	Number	Y
Fragment Mass Error (ppm)	(Optional) Shows the difference between the Found at Fragment and the Fragment Mass, in ppm.	Number	Y
Fragment Mass Error (mDa)	(Optional) Shows the difference between the Found at Fragment and the Fragment Mass, in mDa.	Number	Y
Fragment Mass Error Confidence	(Optional) Shows the level of confidence in the fragment mass error.	Text	Y
Height	Shows the detected peak height. If a peak was not detected, then this value is set to N/A .	Number	Y
Height Ratio	For analytes that use an internal standard, shows the ratio of the Height to the IS Height . For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Y
Index	Shows the index of the row in the original, unsorted order. If the table is sorted based on another column, then it can be returned to the original order by sorting on this column.	Number	Ν
Injection Volume	Shows the volume of the sample stored in the method and injected by the autosampler.	Number	Y

Label	Description	Format	LIS Supported
Integration Acceptance	Shows how closely the peak integration meets the acceptance criteria. It is calculated based on these factors, as configured in the flagging rules:	Number	N
	Integration quality		
	Assymetry factor		
	Total peak width, in minutes		
	Retention time error, measured as a percentage or in minutes		
Integration Type	Shows the type of integration.	Text	Y
	• Baseline : A standalone peak that was integrated in the usual way.		
	• Valley : Indicates that there were two adjacent peaks and that the signal did not return to the baseline value between them.		
	• N/A : Indicates that a peak was not detected.		
	• Manual : Indicates that the peak was manually integrated.		

Label	Description	Format	LIS Supported		
Ion Ratio	Shows the ion ratio. Ion ratios are determined when at least two MRM transitions from a single analyte have been collected in a group.	Number	Y		
	All of the analytes in a group constitute an analyte subgroup. All of the internal standards in a group constitute an IS subgroup. The first component in a subgroup is used as a quantifier ion. The remainder of the components in the subgroup are used as qualifier ions.				
	Ion Ratio = (Peak Area or Height of Qualifier)/(Peak Area or Height of Quantifier)				
	The ion ratio can be calculated for either the peak area or the peak height. If the processing method uses the area for the regression of the first component, that is, the component for which the component index is 1, in the Results Table, then the peak area is used to calculate the ion ratio for the entire Results Table. If the height is used for the regression of the first component, then the peak height is used for the calculation.				
	 If a component is not a member of a group, then the Ion Ratio value is set to N/A. 				
	 If a peak is not found, then the lon Ratio value is set to N/A. 				
	 If the ion ratio is applied to all of the components in both of the analyte and IS subgroups, then the qualifier is the quantifier. 				
	• If the integration changes for either of the quantifier or the qualifier peaks, then the ion ratio is calculated again.				

Label	Description	Format	LIS Supported
	Note: The user can define flagging rules for the ion ratio in the processing method.		
Ion Ratio Acceptance	Shows the acceptance status of the ion ratio.	Number	Ν
Ion Ratio Confidence	Shows the level of confidence in the ion ratio. Applicable to qualitative workflows only.	Text	Ν
IS	Shows whether the row is an internal standard. A selected check box indicates that the component for the row is an internal standard, not an analyte.	Number	N
	Note: The IS check box is automatically selected for sample names containing .heavy or -cis because these samples are defined as internal standards in proteomics workflows. For other workflows, they are not internal standards, so the IS check box should be cleared.		
IS Actual Concentration	Shows the actual concentration of the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν
IS Area	Shows the area for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν
IS Area / Height	Shows the ratio of the IS Area to the IS Height for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν

Label	Description	Format	LIS Supported
IS Baseline Delta / Height	Shows the absolute value of the height difference between the baseline, at the start of the peak and the end of the peak, and the actual peak height for the internal standard. Values greater than 0.1 indicate that the baseline might not have been integrated correctly and that the peak should be reviewed.	Number	Ν
IS Comment	Shows an arbitrary comment for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Text	Ν
IS End Time	Shows the time that the acquisition ends for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν
IS Expected MW	Shows the expected molecular weight for the internal standard associated with the current analyte, in Da. For internal standards, or for analytes without an internal standard, this value is set to N/A . Applicable to mass reconstruction workflows only.	Number	Y
IS Expected RT	Shows the expected retention time for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν
IS Height	Shows the height for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	N

Label	Description	Format	LIS Supported
IS Integration Type	Shows the type of integration for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Text	Ν
IS Mass Info	Shows the mass information for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Text	Ν
IS MW	Shows the found molecular weight for the internal standard associated with the current analyte, in Da. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν
	Applicable to mass reconstruction workflows only.		
IS MW Delta (Da)	Shows the difference between the expected and found molecular weight for the internal standard, in Da. Applicable to mass reconstruction workflows only.	Number	Y
IS MW Delta (ppm)	Shows the difference between the expected and found molecular weight for the internal standard, in ppm. Applicable to mass reconstruction workflows only.	Number	Y
IS Name	Shows the name of the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Text	N

Label	Description	Format	LIS Supported
IS Peak Comment	Shows the peak comment for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Text	Ν
IS Quality	Shows the quality of the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ζ
IS Region Height	Shows the height for the internal standard region. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν
IS Retention Time	Shows the retention time for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν
IS Signal / Noise	Shows the signal-to-noise ratio for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν
IS Start Time	Shows the start time for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν
IS Total Width	Shows the total width for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν

Label	Description	Format	LIS Supported
IS Width at 50%	Shows the width at 50% for the internal standard associated with the current analyte. For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Ν
Isotope Confidence	Shows the level of confidence in the isotope ratio. Applicable to qualitative workflows only.	Text	Ν
Isotope Ratio Difference	Identifies the difference between the theoretical isotope pattern, based on the formula, and isotope pattern from the acquired spectra. Applicable to qualitative workflows only.	Number	Ν
LC Method	Shows the name of the LC method used to acquire the data.	Text	Ν
Library Confidence	Shows the level of confidence in the Library Hit based on the Library Score of the hit. Applicable to qualitative workflows only.	Text	Ν
Library Hit	Shows the compound name of the best library match, that is, the compound with the highest purity score and the formula matching the requested formula. The value is can be updated using data from the Peak Review Library Search Results grid. Applicable to qualitative workflows only.	Text	Ν
Library Score	Shows how well the library match fits the found mass. Applicable to qualitative workflows only.	Number	Ν

Label	Description	Format	LIS Supported
Mass Error (ppm)	Shows the difference between the found mass and the extraction mass, expressed in parts per million.	Number	Ν
	Applicable to qualitative workflows only.		
Mass Error (mDa)	Show the difference between the found mass and the extraction mass, expressed in milliDaltons.	Number	N
	Applicable to qualitative workflows only.		
Mass Error Confidence	Shows the level of confidence in mass error.	Text	N
	Applicable to qualitative workflows only.		
Mass Info	Shows the mass information associated with the component.	Text	Y
	• For MRM experiments, this is Q1/Q3 and for profile, or full scan, experiments it is Start - Stop.		
	• For UV, ADC, or DAD experiments, it is the wavelength (DAD) or channel information (UV/ADC).		
	If the fragment mass exists it will be used for XIC extraction.		
	If there is no fragment mass, then the precursor mass should be used for XIC extraction.		
Modified	Shows whether the peak-finding parameters have been modified. A selected check box indicates that the peak-finding parameters in the processing method have been modified, using the Peak Review pane.	Number	Y
MS Method	Shows the name of the MS method used to acquire the data.	Text	N

Label	Description	Format	LIS Supported
MW	Shows the found molecular weight of the analyte, from the reconstructed graph, in Da.	Number	Y
	Applicable to mass reconstruction workflows only.		
MW Delta (Da)	Shows the difference between the expected and found molecular weight, in Da.	Number	Y
	Applicable to mass reconstruction workflows only.		
MW Delta (ppm)	Shows the difference between the expected and found molecular weight, in ppm.	Number	Y
	Applicable to mass reconstruction workflows only.		
Non-Targeted Peak	Indicates whether the peak was found by the Enhanced Peak Finder.	Number	N
	Applicable to qualitative workflows only.		
Operator Name	Shows the name of the instrument operator who acquired the sample.	Text	Y
Original Filename	Shows the name of the file.	Text	Y

Label	Description	Format	LIS Supported
Outlier Reasons	When the automatic removal of outliers has been enabled in the quantitation method, shows which criterion was found to be outside of the predetermined limits for the component.	Text	N
	The Outlier Reasons column is linked to the rules for automatic removal of outliers in the quantitation method. It is a preset column in the Results Table.		
	The reason the outlier is flagged:		
	Accuracy		
	Concentration		
	Ion ratio		
	If there is a peak for only one of the quantifier or qualifier, then the ion ratio is flagged for both components. If neither of these components have peaks, then the ion ratio is not flagged for either of the components.		
	Cannot calculate the expected ion ratio		
	 A custom flagging rule created by the user has failed 		
Peak Comment	Shows an arbitrary comment for the row.	Text	N
Plate Number	Shows the plate number of the autosampler used to acquire the data, as indicated in the Batch Editor.	Text	Y
Points Across Baseline	Shows the number of scans across the peak.	Number	Z
Points Across Half Height	Shows the number of scans across the peak, at approximately 50% of the height.	Number	N
Polarity	Shows the polarity of the experiment used to acquire the sample.	Text	N

Label	Description	Format	LIS Supported
Precursor Mass	Shows the processing input parameters taken from the processing method. This column is always visible in the Results Table. In the Column Settings dialog, the check box is not available.	Number	N
Proc. Method Name	Shows the name of the processing method that created the Results Table.	Text	Y
Quality	Shows the quality of the integrated peak. The area of the integrated peak and the area of a larger RT window are compared. A value of 0 indicates that the peak is poorly integrated, or that a peak is not present. A value of 1.0 indicates a well- integrated peak that need not be reviewed.	Number	Ν
Rack Number	Shows the rack number of the autosampler used to acquire data, as specified in the Batch Editor.	Text	Y
Region Height	Shows the peak height of the largest peak in the vicinity of the detected peak. This is useful in conjunction with the Quality field. Peaks with a low quality that also have a reasonable Region Height must be reviewed. If the Region Height is small, then a significant peak is not present.	Number	Ν
Relative RT	For analytes that are using an internal standard, shows the ratio of the Retention Time to the IS Retention Time . For internal standards, or for analytes without an internal standard, this value is set to N/A .	Number	Y
Reportable	Shows whether the result is included in reports, exports, and LIMS transfers.	Number	Y
Retention Time	Shows the actual retention time of the detected peak, in minutes.	Number	Y
Retention Time Delta (min)	Shows the difference between the retention time defined for the mass and the actual retention time.	Number	N

Label	Description	Format	LIS Supported
Retention Time Error (%)	Shows the percent error found between "Found at RT" and "Expected RT".	Number	Ν
	Applicable to qualitative workflows only.		
RT Confidence	Shows the confidence in the retention time.	Text	Ν
	Applicable to qualitative workflows only.		
Sample Comment	Shows a user-specified comment for the sample.	Text	Y
Sample ID	Shows a user-specified identifier for the sample. The Sample ID is specified in the Batch Editor prior to sample submission for acquisition. If the standard addition workflow is enabled in the processing method, then the Sample ID is used as a group identifier for each standard addition group. SCIEX OS links each sample with an unknown analyte concentration to samples to which known and varying concentrations of the same analyte have been added.	Text	Y
	The Sample ID can contain up to 252 characters. The Sample ID cannot contain any of these invalid characters: \ / : * ? " < > = or characters 0 to 31 from the ASCII table.		
Sample Index	Shows the index of the current sample. Note: This column is locked and always displayed at the left side of the Results	Number	Y
	Table.		

Label	Description	Format	LIS Supported
Sample Name	Shows a user-specified name for the sample. The Sample Name is specified in the Batch Editor prior to sample submission for acquisition.	Text	Y
	The Sample Name must contain from 1 to 252 characters. The Sample Name cannot contain any of these invalid characters: \/:*?" <> = or characters 0 to 31 from the ASCII table.		
	Note: This column is locked and always displayed at the left side of the Results Table.		
Sample Type	Shows the type of sample.	Text	Y
Scanned Barcode	Shows the barcode scanned prior to the injection.	Text	Y
Signal / Noise	Shows an estimate of the ratio of the peak height for the detected peak to the noise present in the chromatogram.	Number	Y
	For the AutoPeak integration algorithm, noise is estimated using the calculated relative noise and the baseline at the peak apex position. The MQ4 algorithm uses a similar approach, except that the baseline is estimated using the entire chromatogram.		
Slope of Baseline	Shows the slope of the integrated peak from the baseline:	Number	Ν
	((intensity at peak stop) – (intensity at peak start)) ÷ peak width		
Start Time	Shows the starting retention time of the detected peak, in minutes.	Number	Y
Start Time at 10%	Shows the time, in minutes, along the front side of the peak where the intensity is at 10% of the peak height.	Number	Ν

Label	Description	Format	LIS Supported
Start Time at 5%	Shows the time, in minutes, along the front side of the peak where the intensity is at 5% of the peak height.	Number	N
Std Addition Accuracy	Shows the accuracy of samples of known concentrations that are quantified by the addition of standards of varying concentration. When the standard addition workflow is enabled in the processing method, the Sample Type for all samples is automatically set to Standard . If the Sample Type is changed to another type, or if the standard addition workflow is not enabled, then this value is set to N/A . For samples of known concentration, such as a quality control sample in a batch, the Std Addition Accuracy is defined as: 100% x (<i>Std Addition Calculated</i> <i>Concentration</i>)/(<i>Std Addition Actual</i> <i>Concentration</i>).	Number	Ν
Std Addition Actual Concentration	Shows the user-specified expected known concentration for samples that are quantified by standard addition. For example, a quality control sample in a batch. If the Sample Type is not Standard , then this value is set to N/A .	Number	N

Label	Description	Format	LIS Supported
Std Addition Calculated Concentration	Shows the value of the back-calculated concentration by extrapolating the standard addition curve to the X-intercept using linear regression and no weighting. For samples that are quantified by standard addition, the Std Addition Calculated Concentration is defined as:	Number	N
	Intercept/Slope		
	if the Sample Type is not Standard , if the standard addition workflow is not enabled in the processing method, or if a peak is not found in the unspiked samples of a standard addition group, then this value is set to N/A .		
Super group ID	Scout Triggered MRM (stMRM) algorithm, group mode: The name of the super group to which a marker transition and dependent transition have been assigned.	Text	N
Tailing Factor	Shows the distance from the front slope of the peak to the back slope, divided by twice the distance from the center line of the peak to the front slope. All of the measurements are made at 5% of the maximum peak height.	Number	Ν
Time Since First Sample (min)	Shows the amount of time, in minutes, since the acquisition of the first sample started.	Number	N
Time Since Last Sample (sec)	Shows the amount of time, in seconds, since the acquisition of the last sample started.	Number	Ν
Total Width	Shows the chromatographic peak width, in minutes, at the baseline.	Number	Y

Label	Description	Format	LIS Supported
Used	Shows whether the result is used.	Number	Y
	• For all samples, a selected check box indicates that the result is used in the calculation of reference values and execution of flagging rules.		
	 For standard samples, a selected check box indicates that the result is used in the construction of the calibration curve, regression, and statistics calculations. 		
	• For QC samples, a selected check box indicates that the result is used for the calculation of the quality control statistics.		
	 For other sample types, a selected check box indicates that the result is used in calculations. 		
Vial Number	Shows the vial number in the autosampler used to acquire data, as originally specified in the batch.	Text	Y
Width at 10%	Shows the width of the peak, measured at 10% of the peak height.	Number	Ν
Width at 5%	Shows the width of the peak, measured at 5% of the peak height.	Number	N
Width at 50%	Shows the chromatographic peak width, in minutes, of the detected peak measured at half of the apex intensity.	Number	Y
XIC Width (Da)	Shows the width of the extracted ion chromatogram, in Daltons.	Number	Y
XIC Width (ppm)	Shows the width of the extracted ion chromatogram, in ppm (parts per million).	Number	Y

Acceptance Filters

Use the **Filter by Flag** option in the Filter menu for a Results Table column to choose whether to filter the column based on the acceptance criteria. The Results Table can be filtered on acceptance criteria, as follows:

- Pass: Shows the rows that match the criteria that were defined in the processing method.
- Fail: Shows the rows that do not match the criteria that were defined in the processing method.

Figure 6-26 Filter By Flag

Acceptance filters can be selected for any column to which a flagging rule was applied, as well as the following acceptance criteria:

- Accuracy
- Accuracy Acceptance
- Asymmetry Factor
- Calculated Concentration
- Concentration Acceptance
- Integration Acceptance
- · Quality
- Retention Time Delta (min)
- Retention Time Error (%)
- Total Width

Confidence Traffic Lights

Use the acceptance criteria to define qualifying rows. A qualifying row is a row in which the acceptance criteria match the criteria defined in the processing method.

Figure 6-27 Qualifying Rows

Define a qualifying row:				
	~		•	
🍾 Ion ratio	~	~	~	~
A Mass error	~	~	~	~
A Frag. mass error	<	<	~	~
∕:oz RT	~	~	~	~
¹⁴ C Isotope	~	~	~	~
III Library	~	~	~	~
C_nH_n Formula	~	~	~	~

The traffic lights show the confidence status for each row to which a Qualitative Rule or Ion Ratio Acceptance rule is applied. For information on flagging rules, refer to the document: *Help System*.

Tip! The Results Table can be filtered using the confidence traffic light filters. Select the **Qualify for Rules Filters** check box to toggle the view of the Results Table between the rows that match the confidence filters and those that do not. Confidence filters include: Pass, Marginal, Fail, and N/A.

Table	6-6	Confidence	Traffic	Lights
-------	-----	------------	---------	--------

Traffic Light Icon	Description
*	Shows which components meet the confidence levels defined in the processing method.
▲	Shows which components meet the marginal percent difference level defined in the processing method.
•	Shows which components meet the unacceptable percent difference level defined in the processing method.
	Shows which confidence parameters are not applicable for the component.

Components and Groups List

When a Results Table is open, a list of the current components and groups is shown on the left side of the main window. Use this list to change which components are visible in the results, as

well as in any linked Peak Review or Calibration Curve panes. All of the information is shown as it was defined in the processing method.

Samples	Components and Groups		
	Options 🔹		
All Comp	oonents		
All Interr	al Standards		
Internal	Std Quant		
Internal	Std Ion Ratio		
All Analy	tes		
25-OH-V	/itD3-Quant		
25-OH-V	/itD3 Ion Ratio		
25-OH-V	25-OH-VitD2-Quant		
25-OH-V	25-OH-VitD2 Ion Ratio		

Figure 6-28 Components and Groups

Click an individual item in the list to show only the components for that item. Use **Shift+click** or **Ctrl+click** to select multiple items, for example, two specific analytes.

Tip! Change the width of the list by dragging the right edge of the pane to the left or right.

The order of the rows in the Results Table is not affected by filtering. The table is preset to be ordered first by sample and then by component, in the order indicated in the processing method.

Table	6-7	Options
TUDIC	0-1	options

Label	Description
Show IS	Click to show the rows in the Results Table for both the currently selected analyte and the corresponding internal standard. This is equivalent to clicking the analyte and then clicking the internal standard while pressing Ctrl , so that both are selected.
Find	Click to find the items in the list that match the specified text.

Review Peaks

Prerequisite Procedures	
Open a Results Table.	

Use the Peak Review pane to:

- Visually inspect the raw chromatograms so that the quality of the peak-finding process can be determined.
- Correct chromatograms that did not integrate properly either by adjusting the peak-finding parameters or by manually selecting the starting and ending points for integration. After a chromatogram is re-integrated, the Results Table is automatically updated with the new peak area and other parameters.
- Visually inspect the MS and MS/MS spectra for the integrated XIC.
- Review the Formula Finding results and Library Search results and, if necessary, manually update the results in the Results Table.
- (Mass Reconstruction workflow) Visually inspect the Average spectrum and Reconstruction spectrum.
- (Mass Reconstruction workflow) Correct chromatograms in which the XIC region was not selected properly, either by adjusting the peak-finding parameters or by manually selecting the XIC region. After a new XIC region is selected, the Average spectrum and Reconstruction spectrum are generated again.
- (Mass Reconstruction workflow) Correct mass peaks that were not selected properly by
 adjusting the Mass Peak Selection parameters or by manually selecting the mass peak. After
 the mass peak is changed, the Results Table is automatically updated with the new peak and
 other parameters.

- 2. In the **Components and Group** list in the left pane, select a component.
- 3. (Optional) Customize the layout of the Peak Review pane with the **View** menu. For a description of the **View** options, refer to the document: *Help System*.
- 4. (Optional) Click **Options > Peak review display settings** to change the appearance of the Peak Review pane. For example, select the number of chromatograms to be viewed at one time. For descriptions of the options, refer to the document: *Help System*.

Figure 6-29 Peak Review Options Dialog

Peak Re	view Options		X
Appearance	Zooming		
Number of r	0.475	2	
Number of th	0005.	2	
Number of c	olumns:	2	~
Overlay:			
Don't overlay 💙			*
Highlight act	ive graph using:		
Bold, italic title and grey background			
Mark expected RT with arrow			
ОК	Cancel	Help	

- 5. (Optional) To zoom in on a peak, use one of these methods:
 - Click **Options** > **Peak review display settings** and then click **Zooming** to change the zooming parameters of the peaks.
 - Drag the cursor over the region to be zoomed on the X-axis or Y-axis.
- 6. (Optional) To expand a peak to fill the entire Peak Review pane, select the peak and then

```
click Peak magnifier (22).
```

Tip! When an icon in the Peak Review pane is black, the corresponding feature is enabled. To disable it, click the icon again.

 (Optional) To view and adjust the noise region on the graph, click Options > Show Noise Regions and then adjust the noise region, if applicable. Refer to the section: Work With Noise Regions. **Note:** Noise regions can be adjusted only if the **Peak to Peak** or **Standard Deviation** signal-to-noise algorithm is being used.

- 8. If a chromatogram or a reconstruction graph contains multiple peaks and an incorrect peak is integrated, then drag across the correct peak to set a new expected retention time or expected molecular weight. If required, adjust the peak finding and integration parameters.
- 9. (Optional) To apply the new parameters to all samples of the sample component or group, use the right-click menu options. For more information, refer to the section: Work With Peaks in the Peak Review Pane.

Tip! To view integrated peaks, click **Displays the peak review** (^M). In the Peak Review pane, select **Options** > **Show navigation controls**. Then click the navigation icons. For a description of the icons, refer to the document: *Help System*.

Tip! Clear the integration by clicking **Set peak to "not found"** (¹). The user can see the raw data before manually integrating the peak. The integration parameters cannot be edited.

- 10. Click **Enable manual integration mode** (A) in the Peak Review pane to use the Manual Integration mode.
- 11. Drag the cursor from the base of one side of the peak of interest to the other. The peak is now manually integrated and the integration parameters used previously are unavailable.

Tip! If the peak has just been modified, then the peak can be reverted to the original method by right-clicking and then clicking **Revert Peak to Original Method**.

Tip! To clear the manual integration and enable the integration parameter fields, clear the

Manual Integration check box and then click Enable manual integration mode (A) again.

12. (Optional) To show the current peak in the Explorer workspace, click **Open data** exploration (

The current zoom level is preserved.

Note: Manual integration of a peak persists until the user changes the integration for that peak in the Peak Review pane or edits the embedded method to change the component.

Note: In the mass reconstruction workflow, if a reconstruction mass peak is integrated manually, then the corresponding XIC region and average spectrum persist until the user changes the integration for that peak in the Peak Review pane or edits the embedded method to change the component.

Work With Peaks in the Peak Review Pane

To Do This	Do This	
Copy integration parameters	Use this command in conjunction with Paste Integration Parameters to copy the peak-finding parameters from one chromatogram to another. This command can be used if the same adjustment to the parameters needs to be made for several chromatograms.	
	 In a graph with an active chromatogram open, right-click, and then click Copy Integration Parameters. 	
	 To apply the change to all of the chromatograms for the component, use the Update Processing Method for Component command. 	
	 To apply the change to all of the chromatograms for the group, use the Update Processing Method for Group command. 	
Paste integration parameters	Use this command in conjunction with Copy Integration Parameters to copy the peak-finding parameters from one chromatogram to another.	
	 In a graph with an active chromatogram open, right-click, and then click Copy Integration Parameters. 	
	2. Right-click in a different chromatogram and then click Paste Integration Parameters .	

Table 6-8 Peak Review Features

To Do This	Do This
Update the processing method for a component	After adjusting the peak-finding parameters for a specific chromatogram, use this command to modify the copy of the processing method saved with the Results Table to use those parameters for the component.
	• Adjust the peak-finding parameters, right-click, and then select Update Processing Method for Component .
	For the specific component, all samples are automatically integrated to use the new parameters and the Peak Review pane and Results Table are updated. If any peaks have been manually integrated, then the user is asked if the re-integration should apply to all peaks or only to those that were not manually integrated.
Update the processing method for a group	(Not applicable to the mass reconstruction workflow) Similar to the Update Processing Method for Component option, except that the integration applies to all components that belong to the same group as the component for the currently active chromatogram. If the user has assigned the various components to groups, and if the components assigned to any given group are expected to have the same retention time, then this command is useful because it allows the user to reset the parameters, including the expected retention time, for all components in the group at once. This command is not useful if the components for the groups do not have the same retention times.
	Adjust the peak-finding parameters, right-click, and then select Update Processing Method for Group.

Table 6-8 Peak Review Features (continued)

To Do This	Do This
Update the processing method for a group, excluding Expected MW	(Mass reconstruction workflows only) Similar to the Update Processing Method for Component option, except that the integration applies to all components that belong to the same group as the component for the currently active chromatogram and reconstruction graph. If the user has assigned the various components to groups, and if the components assigned to any given group are expected to have the same retention time and integration parameters, then this command is useful because it allows the user to reset the parameters, including the expected retention time, for all components in the group at once. This command is not useful if the components for the groups do not have the same retention times. This command is not applied to Expected MW .
	 Adjust the peak-finding and integration parameters, right-click, and then select Update Processing Method for Group, Excluding Expected MW.
Apply integration parameters to a sample within a group	(Not applicable to the mass reconstruction workflow) After adjusting the peak-finding parameters for a specific chromatogram, use this command to apply the parameters to all compounds in a sample that belong to the same group as the compound that was changed.
	 Adjust the peak-finding parameters for the chromatogram, right-click, and then select Apply integration parameters to sample within a group.
Apply integration parameters to a sample within a group, excluding Expected MW	(Mass reconstruction workflows only) After adjusting the peak- finding parameters for a specific chromatogram and the integration parameters for a reconstruction graph, use this command to apply the parameters to all compounds in a sample that belong to the same group as the compound that was changed. This command is not applied to Expected MW .
	• Adjust the peak-finding for the chromatogram and the integration parameters for the deconvoluted mass peak, right-click, and then select Apply integration parameters to sample within a group, excluding Expected MW .

Table 6-8	B Peak	Review	Features	(continued))
			· outur oo	(continuou)	1

To Do This	Do This
Revert a peak to the original method	After adjusting the peak-finding parameters for a specific chromatogram, use this command to apply the original parameters from the copy of the processing method saved with the Results Table to the chromatogram.
	 In a graph with an active chromatogram open, right-click, and then select Revert Peak to Original Method.
Revert all peaks for a component	 After adjusting the peak-finding parameters for some chromatograms, use this command to apply the original parameters from the copy of the processing method saved with the Results Table to all chromatograms for the same component as the active chromatogram. If any peaks have been manually integrated, then the user is asked if the re-integration should apply to all peaks or only to those that were not manually integrated. In a graph with an active chromatogram open, right-click, and then select Revert All Peaks for Component.

 Table 6-8 Peak Review Features (continued)

Work With Noise Regions

If the **Peak to Peak** or **Standard Deviation** signal-to-noise algorithm is used, then the noise regions can be adjusted interactively in the Integration page of the processing method and the Peak Review pane.

- 1. Click the noise region on the graph and move it to the required location.
- 2. Move the cursor over the left or right edge of the noise region until the double-headed arrow is shown. Then drag the edge to the required position to adjust the size of the noise region.

Analyze Peaks Using Library Search or Formula Finder Results

Tip! Click **Options** > **Peak review display settings** to change the number of rows shown in the pane. Users can also drag the top of the pane up to increase the size of the Peak Review pane.

1. In a Peak Review pane, click **View** and then click **XIC + MS**, **XIC + MS/MS**, or **XIC + MS + MS/MS**.

The search results are shown below the graphs.

Figure 6-30 Library Search Results

2. Click the blue arrow to expand the **Library Search Results** to show more possible library hits.

The chemical structure of selected library hit is also shown in the table.

- Click the arrow again to collapse the table.
 The results shown in the collapsed table are also shown in the Results Table.
- 4. (Optional) Select a row in the table and then click to update the results in the Results Table to use that specific library hit in the analysis.
- 5. (Optional) Click compound to update the processing method with the information for the selected compound.
- 6. To add a spectrum to the library database, follow these steps:
 - a. Right-click the spectrum and then click **Add spectrum to library**. The Add spectrum to library dialog opens.
 - b. Update the Compound Name, Library, and Precursor m/z fields.

- c. Click OK.
- 7. Click the blue arrow to expand the **Formula Finder Results** to show more possible results.

Figure 6-31 Formula Finder Results

The chemical structure of the selected formula finder results is also shown in the table if the compound has been updated from ChemSpider.

- 8. Click the arrow again to collapse the table. The results shown in the collapsed table are also shown in the Results Table.
- 9. Click to update the **Formula Finder Results** column in the Results Table with the selected compound.
- 10. Click 🤷 to update the processing method with the information of the selected compound.

Tip! Click Options > Get Chemspider hit count to show the ChemSpider Hit Count column in the table below the graph.

11. Click **1** to open the ChemSpider application. Refer to the section: ChemSpider.

ChemSpider

Note: The workstation must contain a valid license file to access the ChemSpider database.

Note: Information in the following image is for example purposes only.

Figure 6-32 ChemSpider Session

nfigider results for: COULD	• Y	1-40 of 196	< 🖸 🛱	Q R A + N 2 2 A + ·			
CS0 2009 3007 44080 44080 9823 6057 6133 6057 6133 6057	Conners Name %(201-8) Mill Market, Sanders Jahn 2019 202 2016/energh-30-methyddynardy fran 12,4+s 2019 202 Periodina. 2019/202	Notecular Yought		Santha bin 2004/cl/2014 of Jongle Manara 120-104, 02 Al-00-08 5901 901 901 901 901 901 901 901 901 901	5794	20 10 1000 tons 2214 re	
B al-1 B Q D D D d N official couples C Q Q P T B No Co				Home Home Home Image with Property Name Marco Image with Property Name Name Image with Name Name Name Name <td>Buter Exe (b) 2 6.00° 2 6.00° 2 6.00° 3 6.30°</td> <td>Clastings Clastings Clastings Clastings Clastings Clastings</td> <td></td>	Buter Exe (b) 2 6.00° 2 6.00° 2 6.00° 3 6.30°	Clastings Clastings Clastings Clastings Clastings Clastings	

ltem	Description
1	Results pane: Shows a list of suggested compounds that match the selected formula. The results are shown in groups of 40 compounds. Use the right arrow to advanced to the next group in the list. Use the left arrow to return to the previous group in the list.
2	Spectra pane: Shows the acquired spectra (in red) and the matching fragments (in blue). More blue fragments indicate a better match.
3	Structure pane: Shows the chemical structure of the compound selected in the results pane.
4	Fragment table pane, Fragments tab: Shows the total number of matching fragments for the selected compound.
ltem	Description
------	--
4	Fragment table pane, Peaks tab: Shows the total number of peaks, the number of matching peaks, and the % of total intensity for the selected compound. The check box in the Assigned column is automatically selected for the matching peaks.

Table 6-9 ChemSpider Features

When you do this	this occurs
Type information in the field beside the Filter XIC List icon.	The results pane is refreshed and contains only the results that match the criteria entered.
Click through the entries in the results pane	The remaining panes refresh, showing the information associated with the selection.
Click through the entries on the Fragments tab of the fragment table pane	The remaining panes refresh. In the spectra pane, red arrows appear at the top and bottom of the matching fragment (in blue). In the structure pane, the components of the chemical structure that match the fragment are highlighted (bold).
Click through the Assigned entries on the Peaks tab of the fragment table pane	The remaining panes refresh. In the spectra pane, red arrows appear at the top and bottom of the matching fragment (in blue). In the structure pane, the components of the chemical structure that match the fragment are highlighted (bold).
Click the down arrow to the right of the ChemSpider results for field and select the ChemSpider web site option	The ChemSpider Web site (www.chemspider.com) opens in a browser window. Refer to the ChemSpider Help for information on accessing information.
Click the down arrow to the right of the ChemSpider results for field and select the Refresh option	All changes are discarded and the session reverts to the original search results.
Click Select	The selected information in the ChemSpider session is copied to the Formula Finder Results pane in the software session. The ChemSpider session closes.

Peak Review Pane Tips

• Sort the Results Table on a particular column and review only those chromatograms that sort to the top or bottom of the table.

- The Peak Review pane is always synchronized with its corresponding Results Table and shows the chromatograms for the same peaks, in the same order, as in the table. Any changes, such as sorting rows, filtering sample types, or selecting any components, that are made to the Results Table are automatically reflected in the Peak Review pane.
- Use the scroll bar at the right of the pane to scroll through the available chromatograms. When the Peak Review pane is active, use the up and down arrow keys on the keyboard or the scroll wheel on the mouse to move through the chromatograms.
- Select a row in the Results Table by clicking in the light-blue region to the left of the first column to show the corresponding peak in the Peak Review pane. If the user scrolls to a particular chromatogram in the Peak Review pane, then the Results Table highlights the corresponding row and then brings it in to view.
- The grouping of numbers is not supported in the Analytics workspace. Users should not group numbers in any text box, for example, integration parameters, and grid, for example, Results Tables.
- At any one time, one chromatogram is considered to be active and is indicated by the title in bold. Make a specific chromatogram active by clicking anywhere within it.

CAUTION: Potential Data Loss. Be careful not to drag the cursor within a chromatogram because doing so adjusts the expected retention time and causes the integration to change.

- If the user drags across a specific peak in a chromatogram, then the **Expected RT** integration parameter is updated with the actual retention time of the peak. The new retention time is then automatically applied and the software integrates the peak again, updating the Results Table accordingly.
- (Mass Reconstruction workflow) If the user drags across a specific peak in a reconstruction graph, then the **Expected MW** parameter is updated with the actual molecular weight of the peak. The new molecular weight is then automatically applied and the software integrates the peak again, updating the Results Table accordingly.
- (Mass Reconstruction workflow) If **Recentered on the largest XIC Peak** is not selected, then the user can manually select the desired XIC region. The time at the center of the XIC region becomes the expected RT, and the RT of the largest peak within XIC region becomes the found RT.
- If the user is reviewing peaks in Manual Integration mode, then dragging the cursor across the peak manually integrates the selected peak. Holding **Shift** while dragging helps keep the line straight.
- When a chromatogram becomes active, the integration parameters shown at the left of the pane are updated to reflect the newly active chromatogram. If the user adjusts the peak integration parameters and then clicks **Apply**, then the currently active chromatogram is affected.

- Users must inspect the peak shape during peak review to identify potential saturated peaks and to make sure that partial or incorrect integration does not erroneously result in incorrectly reported concentrations.
- Users must inspect the chromatograms during peak review for the presence of excessive noise spikes that might indicate system issues.
- Double-click within the Y-axis to scale the axis to the most intense peak within the entire data set. Zoom in by dragging within the axis to select an intensity range.
- Double-click within the X-axis to return the graph to the home view in which all of the data is visible. Zoom in by dragging within the axis to select a time range.
- When navigating sample by sample in the Results Table, click **Results** > **Cache all chromatograms for faster peak review** to improve the performance.

Samples of extremely high concentrations, well above the upper limit of quantitation, or ULOQ, might result in increasingly broader, saturated peaks with distorted or split shapes.

The following figure shows the maximum concentration that can be quantified using linear regression.

Figure 6-33 Examples of Non-Saturated and Saturated Peaks

ltem	Description
1	Shows an acceptable peak that can be used for quantitation.
2	Shows a peak that is saturated. The concentration of the sample that generated this peak is well above the ULOQ. As the peak becomes saturated, the peak becomes wider and the top of the peak is inverted due to gain suppression. Such a peak should be excluded from quantitation because partial integration could result in incorrectly reported concentrations.
3	Shows the extreme saturation that results in the LC peak separating in to two peaks. Such a peak should be excluded from quantitation because partial integration could result in incorrectly reported concentrations.

Analyze Data Using Statistics

Prerequisite Procedures

• Open a Results Table.

Use the Statistics pane to view information related to the reproducibility of an analysis. Each row of the table summarizes information, such as the average and standard deviation, for a group of related peaks from the same analyte that would be expected to have the same response.

Review the peak integration, the calibration curve, and the sample statistics using an iterative process. The precision set for the **Actual Concentration** field in the Results Table is used in the statistics table as well.

Note: Refer to the laboratory standard operating procedures for information about accepted values for the statistics, including %CV and Accuracy.

Open a Results Table and then click **Views** > **Statistics pane**.

Label	Description
Row	Shows the row number.
Component Name	Shows the name of the analyte.
Sample Name/ Actual Concentration	When samples are grouped by actual concentration, shows the concentration. When samples are grouped by sample name, shows the sample name.
Num. Values	Shows m of n where n is the total number of samples at the actual concentration, or with the same sample name, and m is the number of these samples used for the calculations. Samples are not used if the corresponding peak could not be integrated, or if the Used field has been manually cleared.
Mean	Shows the average of the used samples.
Standard Deviation	Shows the standard deviation of the used samples.
Percent CV	Shows the co-efficient of variance expressed as a percentage: 100 * <i>Standard Deviation / Mean</i> .

Statistics Pane Columns

Label	Description				
Accuracy	Shows the mean value divided by the actual concentration expressed as a percentage: 100 * <i>Mean / Actual Concentration</i> . This field is shown only when grouping by actual concentration, not when grouping by sample name.				
Values	Shows the individual values for the samples in additional columns. If the corresponding sample could not be integrated, then N/A is shown. If the Used field has been manually cleared, then the value is shown with a strikethrough.				
Group by	Specifies how the sample for a given analyte should be grouped for the calculation of the statistics. The following options are available:				
	 Group by Concentration for Standards: Standard samples are grouped by actual concentration. 				
	• Group by Concentration for QCs : Quality control samples are grouped by actual concentration.				
	• Group by Sample Name for Standards: Replicate standard samples are grouped by the Sample Name field.				
	• Group by Sample Name for QCs: Replicate quality control samples are grouped by the Sample Name field.				
	 Group by Sample Name for All Samples: All replicate samples are grouped by the Sample Name field. 				
Metric	Specifies the actual metric that is used for the calculation of the statistics. The following options are available:				
	Calculated Concentration: The Calculated Concentration field of the Results Table is used.				
	Area: The Area field of the Results Table is used.				
	Height: The Height field of the Results Table is used.				
	• Calibration Y-Value : The regression parameter specified for the analyte is used. This is either Area or Height for an analyte without a corresponding internal standard, or Area Ratio or Height Ratio for an analyte that uses an internal standard.				
Save Results and Export	Click to save the results and export the statistics table. The Export Statistics dialog opens.				

Statistics Pane Tips

- In the **Components and Groups** list, select **All Components** to view the entries for all of the analytes in the Statistics table. Select an individual component to view the entries for that analyte only. If the user selects an individual internal standard from the list, then the Statistics table is empty. Refer to the section: Components and Groups List.
- Click one of the **Value** cells for a row that is visible in the Statistics pane to select the corresponding row in the Results Table for the analyte and sample. If the Peak Review pane is visible, then it links to the Results Table and it is updated when the corresponding cell is clicked.
- Sort the statistics by clicking one of the column headers.
- Copy the whole Statistics table or just the rows of interest by selecting the rows and then pressing **Ctrl+C**.
- Use the **Group by** list to specify how the sample, for a given analyte, should be grouped for the calculation of the statistics.
- Use the **Metric** list to specify the metric that is used for calculation of statistics, calculated concentration, area, and so on.
- Adjust the column widths to optimize the display. These widths are preserved the next time the Statistics pane is shown.
- To change the format and precision for the Statistics table, change them in the Results Table. Refer to the section: Customize the Results Table.
- To change the **Use Peak** option for an individual value, right-click in the cell in the Statistics pane, and select **Use Peak**. The **Use Peak** column in the Results Table is updated.

View the Calibration Curve

Prerequisite Procedures

• Open a Results Table.

Use the calibration curve to determine the concentration of a substance in an unknown sample by comparing the unknown sample to a set of standard samples of known concentration. Refer to the section: Calibration Curves.

- 1. Click **Displays the Calibration Curve** (
- 2. To set the regression options, click **Regression**. Refer to the document: *Help System*.

Export Calibration

Use Export Calibration to save a copy of the calibration equation for all of the analytes associated with the active Results Table to an external file (mqcal). This allows the user to apply the calibration from one set of standard samples to other samples that are not part of the same Results Table.

The typical workflow is:

- 1. Create a Results Table containing only the standard.
- 2. Use the Peak Review pane to make sure that the integration was successful.
- 3. In the Calibration Curve pane, click **Options** > **Export calibration (and save results)** to save a copy of the calibration.
- 4. Create a new Results Table containing samples of unknown concentration.
- 5. In the Calibration Curve pane, click**Options > Assign external calibration** to apply the exported calibration equation to the new Results Table.

Note: Users can also specify the calibration file (mqcal) to apply to the new Results Table.

If changes are made to the original Results Table, with the standard samples, then the Results Table must be exported again to save the updated calibration equation. Previously exported calibrations are not automatically updated.

Analyze Data Using Metric Plots

Prerequisite Procedures

• Open a Results Table.

Use a Metric Plot to plot the values in a Results Table column against either the row number or another column. These plots are a valuable aid for visual data review.

If one column is selected, then the resulting plot shows the values from the column as a function of the row number in the table. If two columns are selected, then the values from the columns are plotted against one another. The first of the two columns to be selected contains the X values and the second contains the Y values.

1. Select one or two columns in the Results Table.

Tip! To select a second column, press Ctrl while clicking the column header.

- 2. Click More > Create Metric Plot with new settings.
- 3. In the Metric Plot, click **Link** and then click **Link to results table columns** or **Link to results table rows** to link the scrolling in the Results Table to the Metric Plot.

For more information about the Link menu, refer to the document: Help System.

4. To update the Metric Plot, select the rows of interest in the Results Table and then, in the Metric Plot pane, click Link > Plot selected rows only.

Tip! To select multiple rows, press Ctrl while selecting the rows.

5. (Optional) Customize the Metric Plot options by selecting options from the **Options** menu. For descriptions of the options, refer to the document: *Help System*.

Metric Plot Tips

- If users left-click on a data point, then the corresponding row of the Results Table is automatically selected and scrolled in to view. If the Peak Review pane is open, then it also updates to show the corresponding chromatogram. This provides a convenient method of performing peak review for outliers.
- The title region always shows the name of the active trace. If traces for multiple components
 are overlaid, then toggle the title between showing information for all of the traces or just
 the active one by clicking the plus sign (+) to the left of the title. Activate a specific trace by
 clicking the title or the color spot to the left of the corresponding title or by selecting a data
 point in the Metric Plot.
- The Metric Plot can be used to plot peak areas for internal standard or QC samples to monitor possible deviations or trends.

Edit Report Templates

CAUTION: Potential Data Loss. To prevent users from modifying templates, make sure that the Reporter templates are located in secured, read-only folders that are accessible for writing only by system administrators.

The user is responsible for validating the custom template.

1. Open the docx template.

Tip! The templates are located in C:\ProgramData\SCIEX\Analytics\Reporter.

When an area is selected, the Reporter template editor opens on the right. The template editor is automatically populated with the tag information.

Figure 6-34 Reporter Template Editor

		1			<u>-</u> 4]			reated wi	н (MQCи	ared With (MQCreated Hith	3	-10	-	Document Actions		0
Meta Field Meta 1 For Each Analyte Group Regression Equation:	Field - © Compound I Analyte Analyte	Regression	nalyte Pea	Printed (M2Report Generation Date M2Report Generation Date M2Report Generation Date M2Report Generation Date Analyte Peak Name Zeakyte Analyte Repression								_	Tags For 5 Field Type 4	Qu Te	antitation «Field		
Combation Coefficient: 1 Data File Acquisition Date Acquisition Method	R*+ Analyte R Sample Acquis Acquis	Squared In File Name Ition Date Ition Metho Ition Metho	Analy e Sampi Acqu ad d	IR Seared File Name Result Table (Result Tai Name Result Tai Name Josin Durie) Agorithm Used (Result Tai Samp Algorithm Result Tai Samp Algorithm Vadrument Name (Sample Sommand Sample Sommand		d Table (Read Tableane Read Tableane) strm Used Read Tab Issay Algorithm Beach Tab Issay Algorithm samet Name Sample Isonomeer Sample Isonomeer					Format Use 1000 Separator	MQ_Quankfier_Co	loulated_Concentration				
Project Sample Name	Result Result Sample Type	Esp. RT (min)	ene RT (min)	RRT (min)	Quart Trace	Quard Area {ops}	Rual Trace	Duol Area (ops)	15 Area (opit)	lon Ratio (Exp. lon Ratio)	Outlier	Catoulisted Conc. (Analyte Unit Analyte Unit	}		Save Tag Para	meters 6	
For Each Sample Sample Name Sample Name	Sample Typ	Analyte Mealyte	- Analy Analyn	Calcula	(- MQQuantifier	(-MQ Quantifie (MQ Quantifier	(For Each Rat (Analyte Mass Analyte Mass For Each Rat	For Each Analyte P Analyte P For Each	SPer /	(ForEach MQIon F (MQEope MQEope) ForEach	(B) PASS B (B) (MQ-Outler Reason (MQ-Outler Reason (B)	MQ Quantifie MQ Quantifie For Each Sam					
End of Table			ForEa	sch Analyte	Group+)					2.0.000				*			

ltem	Description
1	Report template showing the current tags.
2	Icons:
	Add new tag.
	Add picture tag.
	Show content area.
	View document change log.
3	Created with : Shows the name of the software providing the tag information.
4	Field Type: Shows the field types applicable to the software.
5	Shows a list of available attributes based on the selected field type. For example, tag name and number format.
6	Save Tag Parameters : Click to save changes. If changes are not saved, then a message is shown prompting the user to save the changes.

2. Use the procedures in the following table.

To Do This	Do This
Change the field type.	Click inside the tag, select a new field type, and then select the attributes.
Change the attributes of the field type.	Click inside the tab and then change the attributes, as required.
Add a tag.	Click the Add new tag icon, select the Field Type, and then select the attributes.
Add a picture.	Click the Add picture tag icon and then select the attributes.
Show where a tag starts and ends.	Click the Show content area icon.
Show the document change log.	Click the View document change log icon.
Copy and paste tags.	Copy the selected tags and then paste them in the new location. Update the field type attributes.
	The attributes are not copied and must be selected.
Navigate between the tags.	Use the left and right arrow keys to move between the tags.
Delete tags.	Do one of the following:
	• If the cursor is to the left of the tag, then press Delete .
	 If the cursor is to the right of the tag, then press Backspace.

Table 6-10 Reporter Functions

3. Click **Save Tag Parameters** after any changes are made.

Tip! Mandatory information is indicated by a flashing red exclamation sign at the left of the field.

Reporter Templates

It is the responsibility of the user to validate the custom report template.

Some report templates use queries. Users can create queries using Microsoft Excel-based formulas to evaluate, manipulate, and present the data from the Results Table in a report. The Metafield tag in the report template tells the report the name of the query file that it should use. To use queries, the name of the query file must be specified in the MetaField tag in the

report template. Queries must also have the extension ".query" to be recognized as a query. The queries must be stored in the Reporter folder where the report templates are stored.

We recommend that the user validate the generated results when a Reporter template is used, especially when queries are used in a template. If any modifications are made to the report template after validation, then the report template should be re-validated. Changes to the report template include any modification to Reporter tags or queries.

Template	Template Description (as shown in the Create Report dialog)	Additional Notes
All Peaks Qual	A report showing, for each sample, a section including the File Information, Sample Information, Analyte Results Table, and overlaid chromatograms of all of the analytes and internal standard. The Analyte Results Table is printed as shown in the Results Table. All the qualitative confidence traffic lights are listed at the beginning of the table.	N/A
Analyte 20 percent Report	A report showing, for each analyte, a section including File Information, and an XIC table for each Blank, Standard, QC, and 20% of all Unknowns.	This is an example report template that has a Query attached - Analyte20percent.Query.
Analyte Summary	Table of results showing Sample Name, Calculated Concentrations and Outliers for all samples in the batch for the specific analyte and the associated Internal Standard.	N/A
Calibration Curve	A report showing the File Information, Statistics Table (standards), and Calibration Curve for analytes, one page per analyte.	 Standards for which the Reportable check box is cleared will not be reported in the data table. Statistics will not be affected by the Reportable status.
		 The report will show the regression equation and graph, as shown and calculated in the Calibration Curve pane in the Analytics workspace, based on the status of the Used column.

Table 6-11 Default Templates

Template	Template Description (as shown in the Create Report dialog)	Additional Notes
Intact Quant All Peaks and Graphs	A report showing the Results Table entries for each sample. All columns visible in the Results Table are shown in the report. The report also includes the XIC chromatograph, average spectrum, and reconstruction spectrum, for each sample and analyte.	This report is specific to the Mass Reconstruction workflow.
Intact Quant Analyte Summary and Calibration Curve	A report showing the Results Table entries, the calibration curve, and the statistics data for each analyte. The Results Table includes Sample Name, Sample Type, Analyte name, Actual Concentration, Area, Height, Expected MW, MW, MW Delta, Calculated Concentration, and Accuracy.	This report is specific to the Mass Reconstruction workflow.
Intact Quant Sample Summary	A report showing Results Table entries for all samples. The Results Table includes Sample Name, Sample Type, Analyte Name, Actual Concentration, Area, Height, Expected MW, MW, MW Delta, Calculated Concentration, Accuracy and Accuracy acceptance.	This report is specific to the Mass Reconstruction workflow.
Metric Plot	A report showing, for each analyte, a section including the File Information and a metric plot of the analyte peak area.	The state of the Reportable check box does not affect the report content. All data points are included even if the check boxes are cleared.
MQ Analyte Report 1	A report showing, for each analyte, a section including File Information, Sample Results Table, and XIC table for each sample - WILL GENERALLY PRINT 2 PAGES PER ANALYTE FOR < 8 SAMPLES	N/A

 Table 6-11 Default Templates (continued)

Template	Template Description (as shown in the Create Report dialog)	Additional Notes
MQ Analyte Report 2	A report showing, for each analyte, a section including File Information and XIC table for each unknown sample - WILL GENERALLY PRINT 2 PAGES PER ANALYTE FOR < 8 SAMPLES	Only unknowns are reported.
MQ Analyte Report 3	A report showing, for each analyte, a section including File Information, and Unknown Samples Summary Table.	Only unknowns are reported.
MQ Analyte Report condensed table	A report showing, for each unknown sample, a section including File Information, Sample info, and Results Summary Table. The table is shown as 2 columns to fit more samples per page.	Only unknowns are reported.
MQ Analyte Report with chromatograms	A report showing, for each analyte, a section including File Information, Sample Results Table, and a small chromatogram for each sample.	Only unknowns are reported.
MQ Blank Template	N/A	Only header information, the logo, and page numbers are shown in the report.
MQ Pep Quant	N/A	For use with the Peptide Quantitation dataset. Refer to the the second example, the absolute quantitation example, in the <i>User Guide</i> for the MultiQuant Software.
MQ QC Summary 1 with flags	A report showing File Information, QC Summary Table per analyte (values with a CV higher than 20% are highlighted), and QC Detailed Results Table (values with an accuracy outside of 80-120% are highlighted).	Quality Controls that have the Reportable check box cleared will not be included in the report, nor will they be used in the calculations.

Table 6-11 Default Templates (continued)

Template	Template Description (as shown in the Create Report dialog)	Additional Notes
MQ Sample Report 1	A report showing, for each sample, a section including File Information, Sample info, IS info, Analyte Results Table, XIC table including IS and each analyte - WILL GENERALLY PRINT 2 PAGES PER SAMPLE FOR < 8 SAMPLES	N/A
MQ Sample Report 2	A report showing, for each unknown sample, a section including File Information, TIC, Sample Details, Analyte XIC, and results in table form - WILL GENERALLY PRINT 2 PAGES PER SAMPLE FOR < 8 SAMPLES	Only unknowns are reported.
MQ Sample Report 3	A report showing, for each unknown sample, a section including File Information, Sample info, and Results Summary Table.	Only unknowns are reported.
MQ Sample Report condensed table	A report showing, for each unknown sample, a section including File Information, Sample info, and Results Summary Table. The table is shown as 2 columns to fit more analytes per page.	Only unknowns are reported.
MQ Sample Report with chromatograms	A report showing, for each sample, a section including File Information, Sample info, Analyte Results Table, and a small chromatogram for each analyte.	Only unknowns are reported.

Table 6-11 Default Templates (continued)

Template	Template Description (as shown in the Create Report dialog)	Additional Notes
MQ Sample Report with Concentration	A report showing, for each unknown sample, a section including File Information, Sample info, and	 The associated query file is Sample Report with Concentration Threshold.query.
Threshold	Results Sum	 Components must be named "Cmpd X #", where X is any character from A to F, and # is any numerical value.
		Example: In the report, a component named "Cmpd A 1" will be shown under the heading Compound Group A ; a component named "Cmpd B 1" will be shown under Compound Group B , and so on.
		 If components are in the same group, then only the first component, alphabetically, in the group will be included in the report.
		Example 1: If "Cmpd B 25" and "Cmpd C 1" both belong to the group "Grp", then "Cmpd C 1" will not be in the report.
		Example 2: If "Cmpd A 1", "Cmpd A 2", and Cmpd A 3" are not assigned to groups, then "Cmpd A 2" and "Cmpd A 3" will not be in the report.
		Example 3: If "Cmpd A 1", "Cmpd A 2", and Cmpd A 3" are assigned to groups 1, 2, and 3, respectively, then all 3 components will be in the report under the heading Compound Group A .

Table 6-11 Default Templates (continued)

Template	Template Description (as shown in the Create Report dialog)	Additional Notes
MQ Sample Report with MRM ratios 2	A report showing, for each unknown sample, a section including File Information, Sample info, and Results Summary Table, overlay of all XIC. Expected Ion ratios are calculated automatically using any available standards. Ratio values are placed in custom columns within the Results Table. Any values outside 20% of expected are flagged. Quantifier analyte names must end in a blank space followed by the number 1. Ratio ion analyte names must end in a blank space followed a number between 2 and 9.	N/A
MQ Sample Report with MRM ratios EU	A report showing, for each unknown sample, a section including File Information, Sample info, and Results Summary Table. Expected Ion ratios are calculated automatically using any available standards. Ratio values are placed in custom columns within the Results Table. Any values outside of expected are flagged (using EU guidelines for ratio tolerances). Quantifier analyte names must end in a blank space followed by the number 1. Ratio ion analyte names must end in a blank space followed a number between 2 and 9.	The associated query file is MRM ratios EU.query.

Table 6-11 Default Templates (continued)

Template	Template Description (as shown in the Create Report dialog)	Additional Notes
MQ Sample Report with MRM ratios MQ EFAB 03	A report showing, for each unknown sample, a section including File Information, Sample info, and Results Summary Table. Expected Ion ratios are calculated automatically using any available standards. Ratio values are placed in custom columns within the Results Table. Any values outside 20% of expected are flagged. Quantifier analyte names must end in a blank space followed by the number 1. Ratio ion analyte names must end in a blank space followed a number between 2 and 9.	N/A
MQ Sample Report with MRM ratios	A report showing, for each unknown sample, a section including File Information, Sample info, and Results Summary Table. Expected Ion ratios are calculated automatically using any available standards. Ratio values are placed in custom columns within the Results Table. Any values outside 20% of expected are flagged. Quantifier analyte names must end in a blank space followed by the number 1. Ratio ion analyte names must end in a blank space followed a number between 2 and 9.	The associated query file is MRM ratios.query.

Table 6-11 Default Templates (continued)

Template	Template Description (as shown in the Create Report dialog)	Additional Notes
MQ Sample Report with standards, QC, and blanks	A report showing, for each sample, a section including File Information, Standards Summary Table, QC Summary Table, Blanks Results Table; then for each unknown sample a section including File Information, Sample info, IS info, Analyte Results Table, XIC table including IS and each analyte - WILL GENERALLY PRINT 2 PAGES PER SAMPLE FOR < 8 ANALYTES.	Standards and Quality Controls that have the Reportable check box cleared will not be shown in their respective summary tables in the report, nor will they be used in the statistical calculations.
MQ Tutorial Dataset Heavy Light	N/A	This report is intended for use with the Tutorial Dataset Heavy Light dataset. Refer to the second example, the relative quantitation example, in the <i>User Guide</i> for the MultiQuant Software.
Per Sample Quant-Qual	A report showing, for each selected sample, a section including the File Information, Sample Information, and Analyte Results Table for the selected analytes. The Analyte Results Table is printed as shown in the Results Table. All the qualitative confidence traffic lights are listed at the beginning of the table.	N/A
Per Sample Quant-Qual Visible Rows Using Visible Analyte	A report showing, for each selected sample, a section including the File Information, Sample Information, and Analyte Results Table for the selected analytes. The Analyte Results Table is printed as shown in the Results Table. All the qualitative confidence traffic lights are listed at the beginning of the table.	The hidden state of a row takes precedence over the state of the Reportable check box. If the Reportable check box is selected but the row is hidden, then the row is not reported.

Table 6-11 Default Templates (continued)

Template	Template Description (as shown in the Create Report dialog)	Additional Notes
Per sample Quant-Qual with statistics	A report showing components for each sample with a WYSIWYG table. XIC, MS, and MS/MS are shown. A statistics summary table for area is shown at the end of the report.	 If the component table has UV components, then the UV trace is reported under XIC graph in the report.
		Note: If the name of the UV component is in the format [<i>compound_name</i> uv] or [uv], then no UV traces are reported, because the uv suffix is associated with the UV MS Qual report.
		 If a sample is labeled as a QC and there are 2 or more samples, then the mean, STDEV, and %CV will be calculated and included in a QC summary table at the end of the report.
		 If the Reportable check box is cleared for a QC row, then that row will not be used for any calculations in the QC summary table.
Per Analyte Quant-Qual	A report showing, for each analyte, a section including the File Information, Results Table, Calibration Curves, and chromatograms including the internal standard and each analyte. This template is suitable for a Results Table with a group defined in it.	N/A

Table 6-11 Default Templates (continued)

Template	Template Description (as shown in the Create Report dialog)	Additional Notes
Positive Hits Qual	A report showing, for each selected sample, a section including the File Information; Sample Information; Analyte Results Table for the selected analytes; overlaid chromatograms of all of the analytes, internal standard, and the XIC; the Acquired/Theoretical MS spectra; and the Acquired/Library MS/MS spectra for each selected analyte. The Analyte Results Table is printed as shown in the Results Table. All the qualitative confidence traffic lights are listed at the beginning of the table.	N/A
Qual CSV report	A report in a csv format showing, for each sample, a section including the File Information, Sample Information, and Analyte Results Table.	Recommended to use CSV option for Report format.
Sample Summary	A report showing, for each sample, a section of Analytes Summary Table. This report template is suitable for a Results Table with groups.	N/A

Table 6-11 Default Templates (continued)

Template	Template Description (as shown in the Create Report dialog)	Additional Notes
UV MS Qual report	A report showing, for each sample, the components of that sample and their corresponding UV component with a WYSIWYG table. XIC, MS, and MS/MS are shown along with UV data. A statistics summary table for area is shown at the end of the report.	• UVMS data should be processed with the naming convention <i>compound 1</i> (any string) for the mass spectrometer (MS) component and <i>compound 1</i> uv (any string plus uv) for the corresponding UV component.
		report.
		 A graph table is created to shown the individual components of the Results Table, including the XIC, MS1 trace, MS/MS trace, and header information from compound 1, and the UV trace from compound 1uv. Refer to Figure 6-35.
		• Analyte graphs are only repeated for the MS experiments, not for the not the UV experiments.
		 If a sample is labeled as a QC and there are 2 or more samples, then the mean, STDEV, and %CV are calculated and included in a QC summary table at the end of the report. Refer to Figure 6-36.
		• If the Reportable check box is cleared for a QC row, then that row in not used for any calculations in the QC summary table.

Table 6-11 Default Templates (continued)

Figure 6-35 Graph Table

Figure 6-36 Statistics Table

Statistics (Grouped by Concentration for QCs - Area)

Analyte Peak Name (MRM Transition)	Mean	Std. Deviation	% CV	Number of Values Used
1 (723.3573 - 723.3773)	1.062e4	7.367e2	6.93	2 of 2
2 (753.3091 - 753.3291)	2.215e4	6.858e2	3.10	2 of 2
3 (760.3353 - 760.3553)	9.332e3	1.955e1	0.21	2 of 2
4 (631.3450 - 631.3650)	3.244e4	1.110e3	3.42	2 of 2
5 (636.3373 - 636.3573)	1.144e5	3.962e2	0.35	2 of 2
6 (871.4354 - 871.4554)	6.479e4	1.198e3	1.85	2 of 2
7 (932.4493 - 932.4693)	2.183e4	7.301e2	3.34	2 of 2
8 (1000.5743 - 1000.5943)	2.553e4	5.007e2	1.96	2 of 2
9 (755.4352 - 755.4552)	1.127e5	8.422e3	7.48	2 of 2
10 (1184.5929 - 1184.6129)	3.576e4	7.231e2	2.02	2 of 2
11 (884.4871 - 884.5071)	5.183e4	1.512e3	2.92	2 of 2
12 (1176.5468 - 1176.5668)	1.670e4	1.848e2	1.11	2 of 2
13 (871.9418 - 871.9618)	1.597e5	5.501e2	0.34	2 of 2
14 (879.4236 - 879.4436)	1.868e5	5.182e3	2.77	2 of 2

When an issue occurs, the Central Administrator Console (CAC) software logs error reports and warnings that are shown on the screen. The Event Log workspace contains logs of system events, including errors, warnings, and messages.

To open this workspace, click the Event Log tile on the Home page.

Label	Description	
Current	A list of the current events for each subsystem.	
Severity	The type of event: information, error, or warning.	
Time	The time that the event occurred.	
Subsystem	The subsystem in which the event occurred.	
Event	A description of the event. This information can be used to troubleshoot the system.	
User	The name of the user and the system where the event occurred.	
	Note: For events triggered by a decision rule, this is the user who submitted the batch.	

Table 7-1 Event Log Workspace Columns

Event Logs

The following logs are available:

- All
- Device
 - LC
 - Mass Spectrometer
- Workspace
 - Batch
 - Explorer
 - Devices
 - General

Events

- LC Method
- MS Method
- MS Tune
- Analytics
- Queue
- Users
- Configuration

After an event log contains 20,000 records, SCIEX OS automatically archives the records and begins a new event log. For more information, refer to the section: Event Log Archives.

View Logs

- 1. Open the Event Log workspace.
- 2. Click an item from the list in the left panel to view the logs.

Archive Logs

- 1. Open the Event Log workspace.
- 2. Click Archive > Archive Log.

Figure 7-1 Archive Menu: Archive Log

Figure 7-2 Archive Log Dialog

Archive Log			X
Archive event log items older than:	10/8/2012	15	
	Archive	Cancel	

- 3. In the Archive event log items older than field, click the date icon and then select a date.
- 4. Click **Archive**.

View Archived Logs

- 1. Open the Event Log workspace.
- 2. Click Archive > Open Log Archive.

Figure 7-3 Archive Menu: Open Log Archive

- 3. Open the required file.
- 4. Click Archive > Close Log Archive.

Figure 7-4 Archive Menu: Close Log Archive

. Archive		٠	Print	
Arc	chive	Log		
Ор	en Lo	og Ai	rchive	
Clo	se Lo	og Ai	rchive	L
				6

Events

Print Logs

- 1. Open the Event Log workspace.
- 2. (Optional) Open an archived log. Refer to the section: View Archived Logs.
- 3. Click **Print**. The Print dialog opens.
- 4. Select a printer and then click **Print**.

Event Log Archives

Event records accumulate in the event logs and can create large files that are difficult to navigate and manage.

When an event log reaches 20,000 records, it is archived. A final event record is added to the event log, and then the event log is saved with a file name indicating the type of event log and the date and time. A new event log is created. The first record in the new event log states that the event log has been archived.

Event log archives are stored in the C:\ProgramData\SCIEX\Clearcore2.Acquisition folder. The file names are in the format <*logfile*>Archive_<YYYYMMDD>_<HHMMSS>.data. For example, CustomerLogArchive_20220427_172915.data.

Auditing

This section explains how to use the auditing functionality.

View the Audit Trail Records

- 1. Open the Audit Trail workspace.
- 2. To view the audit trail for the workstation, click **Workstation** in the left pane.
- 3. To view the audit trail for a project, select the project in the left pane. Then select one of the following:
 - **General Events:** To show audit records that apply to the whole project, such as audit map changes and sample acquisition.
 - Analytics: To show the audit records for a Results Table.
 - All Project Events: To show audit records for both general events and processing events.

Filter Audited Events Using a Keyword Search

The user can filter the audited events in the audit trail using a keyword search. The search highlights every occurrence of the text.

- 1. Open the Audit Trail workspace.
- 2. Select the audit trail to be searched. Refer to the section: View the Audit Trail Records. The Audit Trail records are shown.
- 3. Type the word to find in the **Find in Page** field. All occurrences of the word on the page are highlighted.
- 4. Use the Next $(\mathbf{\nabla})$ and Previous $(\mathbf{\Delta})$ buttons to move through the matches.

Filter Audited Events Using a Set of Specified Criteria

The user can filter the audited events in the audit trail using a set of specified criteria.

- 1. Open the Audit Trail workspace.
- 2. Select the audit trail to be filtered. Refer to the section: View the Audit Trail Records. The Audit Trail records are shown.

Auditing

- Click Filter (¹). The Filter Audit Trail dialog opens.
- 4. Use the lists to define the required filter criteria.

Figure 8-1 Filter Audit Trail Dialog

I	ilter Audit Trail				×
	Find instances where			Clear	
1	Description		Is 2 Contains	Project Audit Map Changed	•4
	Full User Name		ls Contains	3 ^{nith}	•
	E-Signature	•	ls Contains	Yes	•
	And where time and date are: 5		From	7/22/2019 15 12:00 AM	
			То	7/22/2019 15 12:00 AM 🔦 🗸	
				OK Cancel	

ltem	Description
1	In the <no filter=""></no> list, select the field to filter on. The following fields are available for filtering:
	Description
	Sample Name
	Full User Name
	• E-Signature
	• Reason
2	Select to filter on an exact word or phrase.
3	Select to filter on a partial word or phrase.

ltem	Description
4	Specify the text to filter on, as follows:Type the full text string. Select Is (item 2).
	 Type a partial text string. Select Contains (item 3). Select Yes or No.
5	Use to filter on events that occurred during a specific date and time.

- 5. To clear the filter, follow these steps:
 - a. Click Filter (🔽).
 - b. Click **Clear** to reset all of the filter criteria to **No Filter**.
 - c. Click OK.

Print the Audit Trail

- 1. Open the Audit Trail workspace.
- 2. Select the audit trail to be printed. Refer to the section: View the Audit Trail Records.
- 3. Click **Print**. The Print dialog opens.
- 4. Select a printer and then click **Print**.

This section describes concepts used in the software.

Data Handling

The SCIEX OS software requires a computer running the Windows 7, 64-bit or Windows 10, 64bit operating system. The computer and the associated system software work with the system controller and the associated firmware to control the system and data acquisition. During system operation, the acquired data is sent to the SCIEX OS software where it can be shown as either full mass spectra, intensity of single or multiple ions over time, or total ion current over time.

Scan Techniques

MS: In MS scans, also referred to as single MS scans, ions are separated according to their mass-to-charge ratio (m/z). A single MS scan might be used to determine the molecular weight of a compound. Single MS scans can also be referred to as survey scans. MS scans do not provide any information about the chemical composition of the ions, other than the mass. Perform MS/MS or MS/MS scans to obtain more information about the ions.

MS/MS: MS/MS scans are used to determine structural information.

- For MS/MS scans on triple quadrupole systems, selected ions enter the Q2 collision cell where they are collisionally activated to fragment, producing characteristic product ions.
- For MS/MS scans on QTRAP systems, precursor ion fragmentation can occur in the Q2 collision cell or the linear ion trap.

If enough energy is used, then the precursor ion fragments to produce characteristic product ions.

MS/MS/MS: The linear ion trap (LIT) system MS/MS/MS scans go one step further than MS/MS scans. A fragment that is produced in the collision cell is fragmented further in the LIT to give more structural information about the molecular ion.

Quadrupole-Mode Scan Types

Triple quadrupole instruments have high-sensitivity Multiple Reaction Monitoring (MRM) capabilities required for quantitation experiments. In addition, they have highly specific scan types, such as precursor ion and neutral loss scans, which allow a more advanced search to be performed on the components of the samples.

Q1 MS (Q1): A full scan type using the first quadrupole (Q1). The ion intensity is returned for every mass in the scan range.

Q1 Multiple Ions (Q1 MI): A selective scan type using the Q1 quadrupole. The ion intensity is returned for the specified masses only.

Q3 MS (Q3): A full scan type using the third quadrupole (Q3). The ion intensity is returned for every mass in the scan range.

Q3 Multiple lons (Q3 MI): A selective scan type using the Q3 quadrupole. The ion intensity is returned for the specified masses only.

MRM (MRM): An MS/MS scan in which a user-defined ion is isolated in the Q1 quadrupole, then fragmented in the Q2 collision cell. The Q3 quadrupole is then used to isolate a user-defined fragment ion that is recorded by the detector. This scan type is used primarily for quantitation.

Product Ion (MS2): An MS/MS full scan where the Q1 quadrupole is used to isolate and transmit a specific precursor ion and the Q3 quadrupole scans a defined mass range. This scan type is used to identify all of the fragment ions of a particular precursor ion.

Precursor Ion (Prec): An MS/MS scan where the Q3 quadrupole is fixed at a specified *m/z* value to transmit a specific product ion and the Q1 quadrupole scans a mass range. This scan type is used to confirm the presence of a precursor ion or, more commonly, to identify compounds sharing a common product ion.

Neutral Loss (NL): An MS/MS scan where both the Q1 quadrupole and the Q3 quadrupole scan a mass range, a fixed mass apart. A response is observed if the ion chosen by the Q1 quadrupole fragments by losing the neutral loss, the fixed mass, specified. This scan type is used to confirm the presence of a precursor ion or, more commonly, to identify compounds sharing a common neutral loss.

Linear Ion Trap Scan Types

The system has enhanced modes of operation. In any of the LIT (linear ion trap) modes, a pulse of ions is introduced into the ion trap (Q3). The main RF fields trap the ions in the radial direction and DC voltages applied to the lenses at both ends of the ion trap are used to trap the ions axially. The trapped ions are allowed to cool for several milliseconds, and then the RF voltage is scanned in the presence of a low-voltage auxiliary AC applied to the rods. The ions that are ejected axially toward the detector are counted.

During the collection phase, ions pass through the Q2 collision cell where nitrogen gas focuses the ions into the Q3 region. The Q3 quadrupole is operated with only the main RF voltage applied. Ions are prevented from passing through the Q3 quadrupole and are reflected back by an exit lens to which a DC barrier voltage is applied. After the fill time (a time defined by the operator or calculated automatically by the software), a DC barrier voltage is applied to the Q3 entrance lens. This stops further ions from entering. The entrance and exit lens DC voltage barriers and the RF voltage applied to the quadrupole rods confine the collected ions within Q3.

During the scan out phase, a potential of a few volts is applied to the exit lens to repel the charged ions. An auxiliary AC frequency is applied to the Q3 quadrupole. The main RF voltage amplitude is ramped from low to high values, which sequentially brings masses into resonance

with the auxiliary AC frequency. When ions are brought into resonance with the AC frequency, they acquire enough axial velocity to overcome the exit lens barrier and are radially ejected towards the mass spectrometer ion detector. This process is called resonant ejection.

Note: Linear ion trap (LIT) scan modes (ER, EMS, EPI, MS³) are only supported on SCIEX 7500 systems with the QTRAP license installed.

- Enhanced Resolution (ER): An MS scan in which ions within a 20 Da region are collected in LIT for a specified fill time and scanned out slowly for enhanced resolution.
- Enhanced MS (EMS): An MS full scan in which all the ions in the specified *m*/*z* range are trapped in LIT for a specified fill time prior to being scanned out and detected.
- Enhanced Product Ion (EPI): An MS/MS scan in which Q1 filters the parent ion that is fragmented in Q2. Fragment ions are trapped in LIT for a specified fill time prior to being scanned out.
- **MS/MS/MS (MS3)**: A scan in which product ions generated in Q2 are collected in LIT. Product ions of a specified *m/z* are isolated in LIT and further fragmented. The resulting fragment ions are trapped into LIT prior to being scanned out and detected.

Information Dependent Acquisition

Note: IDA methods are only supported on SCIEX 7500 systems.

Information dependent acquisition (IDA) is an acquisition method that analyzes survey scan data during acquisition. IDA is used to change the experimental conditions depending on the analysis results of the survey scan. These real-time changes are controlled by criteria set in the acquisition method, including:

- A maximum number of candidate ions
- An intensity threshold, which specifies the minimum intensity for candidate ions
- Dynamic background subtraction, which prioritizes ions based on intensity increase
- Exclusion of former candidate ions
- The charge state for candidate ions, and whether ions with an unknown charge state should be included
- A mass range for candidate ions
- A list of ions to be included
- A list of ions to be excluded
- An exclusion window, which specifies the isotopic ions to be excluded
- The isotopic pattern that triggers a dependent scan

• A mass tolerance window, which specifies the mass window around the candidate ion in which masses will be considered the same as the candidate ion

Create an IDA method with a survey scan and eight dependent scans in a single period. The survey scan and IDA criteria are used in IDA to determine the candidate ions for dependent scans. The following scan types can be used as survey scans:

- MRM
- Neutral loss
- Precursor ion
- Q3
- Enhanced MS (EMS)

The following scan types can be used as a dependent scans:

- EPI
- Product ion
- MS³ (second-level dependent scan)

In an IDA experiment, the mass spectrometer actions are varied from scan to scan, depending on the data acquired in a previous scan. The software analyzes data as it is being acquired and then determines the masses on which to perform dependent scans. Users can set the criteria that will activate an IDA experiment and the method parameters to be used.

Different Data View

Chromatograms

A chromatogram shows the variation of some quantity with respect to time in a repetitive experiment. For example, when the instrument is programmed to repeat a given set of mass spectral scans several times. Chromatographic data is contiguous, even if the intensity of the data is zero. Chromatograms are not generated directly by the instrument, but are generated from mass spectra.

In the chromatogram graph, the intensity, in counts per second (cps), is shown on the Y-axis versus time on the X-axis. Peaks are automatically labeled.

Chromatographic peaks can change in retention time and intensity based on changes in chromatographic conditions for a given sample.

The software show the following types of chromatograms:

• **TIC**: The plot of the total ion current as a function of time.

• **XIC**: An ion chromatogram created by taking intensity values, at a single, discrete mass value or a mass range, from a series of mass spectral scans. An XIC indicates the behavior of a given mass or mass range as a function of time.

Figure A-2 Example XIC

Spectra

A spectrum is the data that is obtained directly from the mass spectrometer and normally represents the number of ions detected with particular mass-to-charge ratio (m/z) values. It is shown as a graph with the m/z values on the X-axis and intensity (cps) represented on the Y-axis.

When data is viewed as a spectrum, mass-specific information about a compound is obtained. A spectrum provides the m/z values for the ions corresponding to a particular chromatographic peak. These ions can be used to find more specific information. For example, a spectrum shows all of the masses that make up a peak, including the intensity of each mass.

Spectral intensities might change, but the m/z value is fixed because the mass of a compound does not change.

There are two ways to generate spectral data:

- If only one scan is acquired, then the data is shown as a spectrum.
- From a chromatogram.

sMRM Algorithm

The Scheduled MRM (sMRM) algorithm includes the following functionality:

- The **Retention time tolerance** column improves the retention time robustness of experiments by allowing an acquisition window to be configured for each transition in the acquisition method. Users can adjust the window size for compounds that have broad LC peaks or large variations in their retention times.
- Dwell times can be calculated automatically, or the user can specify a custom dwell time for each transition. Highly abundant compounds can be assigned a low dwell time, while less abundant compounds can be assigned a high dwell time. User-edited dwell times are deducted from the target cycle time and the remaining cycle time is redistributed to calculate the dwell times for unedited transitions. During the run, the available dwell time is assigned based on either the software-calculated or user-edited value, both of which must be within the minimum and maximum dwell times that are specified by the user in the method.

sMRM Algorithm Triggering

If triggering is enabled for the sMRM algorithm, then the following functionality is also available:

- The user can label multiple transitions for an analyte as either primary or secondary. Primary transitions are monitored throughout the acquisition window, while secondary transitions are only monitored after the associated primary transitions reach their trigger thresholds. This minimizes the cycle time by reducing the number of MRM transitions monitored. The acquisition time is focused on collecting data for the analytes that are present in a sample, where all of their corresponding transitions are detected above a defined threshold, and not for analytes that are not present in the sample.
- The algorithm supports dynamic background subtraction (DBS) for triggering secondary transitions. Refer to the section: Dynamic Background Subtraction Algorithm. When DBS is enabled, it is applied to the primary transitions to trigger secondary transitions in that experiment.

For IDA methods that use the sMRM algorithm for survey scans, if DBS is enabled in the IDA Criteria, then it is applied to the primary transitions to trigger both secondary transitions and MS/MS scans.

stMRM Algorithm

The Scout Triggered MRM (stMRM) algorithm is a refinement of the Scheduled MRM (sMRM) algorithm.

In the sMRM algorithm, when triggering is enabled, primary transitions can be used to acquire data for secondary transitions based on user-defined trigger thresholds. However, the triggering is limited to transitions that belong to the same compound group and that have identical retention times and retention time tolerances.
The stMRM algorithm expands on this capability by using marker transitions to trigger dependent transitions. The dependent transitions can belong to the same compound group ID, or they can belong to a different one, if it elutes at a later retention time than the corresponding marker transition.

A marker compound is a compound that triggers the acquisition of later-eluting dependent transitions. It must be a compound that is known to be present in every sample, or that has been introduced into every sample, such as a mass-labeled internal standard or endogenous compounds that are ubiquitous in a sample matrix.

The stMRM algorithm has two modes. Dependent transitions can be associated with marker transitions based on relative retention time (**Scout triggered MRM RT** mode) or group (**Scout triggered MRM group** mode).

Note: The stMRM algorithm can be used for cross-experiment triggering between experiments with positive and negative polarity. Both experiments must use the same stMRM algorithm mode.

Retention Time Mode

In retention time mode, the user need not define a retention time window, that is, retention time plus or minus retention time tolerance, for each transition. Instead, retention times identified during initial method development are used to determine the elution order of the transitions. The software then automatically assigns dependent transitions to user-defined marker transitions based on the proximity of their retention times. Retention times specified for dependent transitions need not be precise, but they must reflect the elution order.

If multiple marker compounds are used, then their retention times must be distributed across the run time so that the run time is segmented into multiple acquisition windows, each consisting of a leading marker transition and its later-eluting dependent transitions.

When the intensity of the first marker transition (Compound A) gets to its trigger threshold, the software starts monitoring for its dependent transitions, as well as the next marker transition (Compound B). Refer to the figure: Figure A-3. When the intensity of the second marker compound (Compound B) gets to its trigger threshold, then the software stops monitoring for the first marker compound (Compound A) and its dependent transitions, and starts monitoring for the dependent transitions of the second marker compound (Compound C).

Figure A-3 Scout triggered MRM, RT Mode

ltem	Description
1	Marker compounds, with retention times that spread across the entire run (Compound A to Compound C).
2	Dependent compounds that are grouped based on retention time (Compound 1 to Compound 12).

Figure A-4 Method Overview: Postive and Negative Polarity

ltem	Description	
1	Dependents of Compound A.	
2	Compound B, also a dependent of Compound A.	
3	Dependents of Compound B.	
4	Compound C, also a dependent of Compound B.	
5	Dependents of Compound C.	

Dependent transitions are associated with and triggered by a preceding marker transition with an earlier retention time.

Example: Triggering of Dependent Transitions

The first marker transition (Compound A) has a retention time of 1.0 min, and the second marker transition (Compound B) has a retention time of 2.0 min.

The dependent transitions Compound 1, Compound 2, and Compound 3, with retention times of 1.1 minutes, 1.5 minutes, and 1.6 minutes, respectively, are triggered by the first marker transition (Compound A). The dependent transitions Compound 6, Compound 7, and Compound 8, with retention times of 2.3 minutes, 2.4 minutes, and 2.5 minutes, respectively, are triggered by the second marker transition (Compound B).

Multiple Marker Transitions

Multiple transitions, such as quantifier and qualifier transitions, with the same compound Group ID and retention time can be identified as marker transitions. All of these marker transitions must exceed their individual trigger thresholds before their dependent transitions will be triggered.

RT Overlap

If a dependent transition elutes too near the starting or ending edge of the acquisition window of its marker transition, then a retention time shift might cause that dependent transition to drift out of the window. If that occurs, then its data will not be acquired. Use the retention time (RT) overlap feature to prevent this issue.

Example: Compound 4

The retention time for a dependent transition, Compound 4, specifies that it elutes after the marker transition Compound A, and before the marker transition Compound B. Because it elutes near the end of the acquisition window for Compound A, it might drift into the acquisition window for Compound B. When Compound B gets to its trigger threshold, monitoring for dependent transitions of Compound A, including Compound 4, stops. Therefore, if Compound 4 does not elute until after Compound B gets to its trigger threshold, then it is not acquired. Refer to the figure: Figure A-5.

Example: Compound 5

Similarly, the retention time for a dependent transition, Compound 5, specifies that it elutes after the marker transition Compound B, so it will be triggered by Compound B. If Compound 5 drifts into the acquisition window of the earlier marker transition, Compound A, then it is not triggered, and will not be acquired. Refer to the figure: Figure A-5.

Example: RT Overlap

To make sure that these bordering dependent transitions are triggered, use the **RT overlap** option. This option lets the user set a tolerance window around each marker transition. Any dependent transitions in the retention time overlap window are triggered by either of the overlapping marker transitions.

In this example, **RT overlap** is set to 0.2 minutes. As a result, Compound 4 will be triggered by Compound B if it drifts out of the acquisition window of Compound A. Similarly, Compound 5 will be triggered by either Compound B or Compound A.

Figure A-5 RT Overlap

Triggered By

The **Triggered by** column shows the compound ID of the marker transition assigned to each dependent transition. Marker transitions are automatically assigned based on user input, including trigger selection, relative retention times, indicating elution order, and RT overlap.

Syntax	Description	
[start of run]	Shows for the first marker transition, or for a transition that elutes before the retention time of the first marker transition.	
II	Shows for a transition that can be triggered by either its own user-defined marker transition or the adjacent marker transition defined in the RT overlap window.	
&&	Shows when a transition is triggered by multiple marker transitions belonging to the same Group ID with the same retention time.	
()	Shows the group for multiple marker transitions with the same retention time that belong to the same Group ID .	

Table A-1 Triggered by Column

Group Mode

In group mode, dependent transitions are assigned to marker transitions by super group. Each super group has at least one marker transition, and multiple dependent transitions, which will be triggered by those marker transitions. The marker transitions must be the first eluting transitions in the super group. If multiple marker transitions are assigned to a super group, then all of the marker transitions must get to their trigger threshold before the dependent transitions will be triggered.

The grouping of the marker transitions and dependent transitions into super groups is based on a predefined analytical relationship that logically connects these compounds together, such as precursor or metabolite, structural isomers, and protein or peptide confirmation.

Input of retention times is optional for both the marker and dependent transitions. Transitions without a retention time are scanned from the time that their marker transition gets to its intensity threshold until the end of the run. Transitions with a specified retention time are scanned during their retention time window, as in the Scheduled MRM (sMRM) algorithm.

During exploratory screening, retention times might not be known for all analytes, especially those that are only suspected to be present in certain samples. Group mode combines retention time window scheduling from the sMRM algorithm and super group-based triggering, which lets the user simultaneously quantitate the typical target analyte list and opportunistically screen for additional compounds with unknown retention times in the same injection. In addition, any transitions that are not assigned to a super group are acquired with the sMRM algorithm.

Figure A	-6 Group	Mode
----------	----------	------

ltem	Description	
1	Early eluting marker that goes above a threshold trigger.	
2	Dependent compounds that are grouped with the marker compound Compound A, based on analytical interest.	

ltem	Description
3	MRM transitions from markers (Compound B and Compound C) that did not go above their trigger thresholds. These dependent transitions are not acquired.

Figure A-7 Method Overview (Positive and Negative Polarity)

ltem	Description	
1	Dependents of Compound A with specified retention times.	
2	Dependents of Compound A with retention time set to zero (0).	
3	Dependents of Compound B with retention time set to zero (0).	
4	Dependents of Compound C with retention time set to zero (0).	

Triggered By

The **Triggered by** column shows the compound ID of the marker transition assigned to each dependent transition. Marker transitions are automatically assigned based on user input, including trigger selection and super group assignment.

Syntax	Description
[start of run]	Shows for a marker transition that belongs to a Super Group ID with a retention time of zero (0).
II	Shows for a transition that can be triggered by multiple marker transitions with a different Group ID but the same Super Group ID .
&&	Shows when a transition is triggered by multiple marker transitions with the same Group ID , retention time, and Super Group ID .
()	Shows the group for multiple marker transitions with the same retention time that belong to the same Group ID .

Table A-2 Triggered by Column

Scheduled Ionization

The Scheduled Ionization feature can be used to reduce the mass spectrometer downtime by decreasing the risk of contamination. If this feature is enabled, then the user can specify the period during which the **Spray voltage** or **Nebulizer current**, depending on the type of probe in use, is set to the value specified in the method.

To use this feature, first determine the period during which the peaks of interest elute by acquiring data without the feature enabled.

After determining the required period, enable the feature, and then set an appropriate **Start time** and **Stop time**.

For example, for a method with a duration of 5 minutes, if the peaks of interest elute between 1.6 minutes and 3.4 minutes, then a **Start time** of 1.5 minutes and a **Stop time** of 3.5 minutes might be used.

Decision Rules

While a batch is being processed in the Queue workspace, the software can perform select corrective actions in response to specified analysis results. For example, if a sample fails to meet the acceptance criteria defined in the processing method (analysis result), then the software can be instructed to reinject the sample (corrective action).

This feature is implemented with decision rules. A decision rule consists of two main parts:

• A flagging rule, which defines the analysis result

Flagging rules are defined in processing methods.

 A corrective action, which is applied if the processing results do not satisfy the criteria for the analysis result

Corrective actions include the following:

- · Stopping the queue
- Aborting the batch
- Injecting a different sample
- · Reinjecting the flagged sample

When creating a batch, the user can activate decision rules for the batch, and then select the decision rules to be used.

Dynamic Background Subtraction Algorithm

The Dynamic Background Subtraction algorithm improves detection of precursor ions in an Information Dependent Acquisition (IDA) experiment. When the algorithm is activated, IDA uses a spectrum that has been background subtracted to select the precursor ion of interest for MS/MS analysis, instead of selecting the precursor from the survey spectrum directly. Because this process takes place during LC analysis, the algorithm enables detection of species as their signal increases in intensity. As a result, this algorithm focuses on detection and analysis of the precursor ions on the rising portion of the LC peak, up to or slightly over the top of the LC peaks.

Quantitative Analysis

Quantitative analysis is used to find the concentration of a specific substance in a sample. By analyzing an unknown sample and comparing it to standard samples, that is, samples containing the same substance with known concentrations, the software can calculate the concentration of the unknown sample. The process involves creating a calibration curve using the signal response or response ratio of the standards and then calculating the concentrations of the unknown samples. The calculated concentrations of all of the samples are added to a Results Table.

Quantitative analysis is most commonly performed using a Multiple Reactions Monitoring (MRM) scan. In an MRM scan, a precursor ion and a characteristic product ion are used to define an MRM transition that is highly specific to the analyte. The MRM transition, coupled with the retention time associated with the analyte during liquid chromatography, provides the specificity required for quantitation.

Quantitation is accomplished through the use of validated MRM LC-MS/MS acquisition methods, acquisition of calibration standard curves, and the subsequent integration of the peaks associated with the compounds of interest. The calibration curve relationship between signal response and concentration is used to determine the quantity of a particular analyte in an unknown sample.

Standard Addition

Standard addition can be used to determine the concentration of a compound in a sample in which a known matrix effect prevents the use of a traditional calibration curve.

This feature allows the user to perform standard addition calculations directly in the software. If the standard addition feature is enabled in the quantitation workflow, then the standard addition calculation is performed during integration, and results are shown in the Results Table.

If this feature is enabled, then these regression parameters are disabled:

- Regression Type
- Weighting Type
- Automatic Outlier Removal

Enable the Standard Addition Feature

- 1. Open the Analytics workspace.
- 2. Click **Process Method** > **New**.

Tip! To edit an existing processing method, click **Process Method** > **Edit embedded method** and then use the following steps.

- 3. Select the Workflow page and then select at least one workflow and the reference samples.
- 4. Select the Components page and then define the component names, masses, internal standards, groups, and so on.

Tip! If the group is defined in the Components table, then the user can choose to sum the ions in the group, even if the precursor ion and the experimental index are different for the transitions. The summed ions are not shown in the table but are shown on the Integration page and in the Results Table as <group name>_Sum. This feature is useful for the quantitation of proteins and peptides.

Tip! Where the retention time of the components is not known, set the **Retention Time Mode** for a mass or chemical formula to **Find** *n* **peaks**, where *n* is 1, 2, 5, 10, or all. The software identifies the specified number of features with the greatest peak area, assigns the appropriate retention time, and then performs a targeted peak processing workflow. When processing is complete, the embedded method for the Results Table can be saved as a normal targeted method.

5. Select the Integration page and then select the integration parameters for each component.

6. Click **Options > Quantitate by standard addition**.

This feature has specific requirements for the following batch fields:

- **Sample ID:** All samples belonging to the same standard addition group must have the same sample ID.
- **Sample Type:** All samples to be quantitated using standard addition must have the sample type, **Standard**.
- Actual Concentration: This field must contain the known concentration of standard added to each sample in the standard addition group. For example, for samples with no standard added, it is **0**. Data from this column is plotted as the X-axis on the Calibration Curve.

If this feature is enabled, then the Results Table contains a new **Standard Addition Accuracy** field that compares the **Standard Addition Calculated Concentration** for a sample to the **Standard Addition Actual Concentration**.

A dynamic view of the calibration curve for a specific sample is shown in the Calibration Curve.

Mass Reconstruction

For large molecules, a charge state spread is typically observed in an MS full scan spectrum. The mass reconstruction feature allows the user to perform spectrum deconvolution directly in the software, and then to perform quantitation based on the deconvoluted or zero-charged mass peaks. If the mass reconstruction feature is enabled in the quantitation workflow, then peak finding, spectrum deconvolution, mass peak finding, and integration are performed during processing, and results are shown in the Results Table.

Enable Mass Reconstruction Feature

Note: Mass Reconstruction is only supported in Quantitation workflow.

Note: Mass Reconstruction is only supported for the MQ4 and Summation integration algorithms.

Note: If Mass Reconstruction is enabled, then **Options > Sum Multiple Ion** is disabled.

- 1. Open the Analytics workspace.
- 2. Click Process Method > New.

Tip! To edit an existing processing method, click **Process Method** > **Edit embedded method** and then use the following steps.

- 3. Select the Workflow page and then select the **Quantitation** workflow and the reference samples.
- 4. Select the Components page.
- 5. Click **Options > Mass Reconstruction**.

6. Add the components, typing information in the required fields.

Note: The Expected MW field is optional.

- 7. Click **Integration** to view the integration page, and review the XIC chromatograph, average spectrum, and reconstruction spectrum, and to select the target mass.
- 8. Save the method.

If this feature is enabled, then the Results Table contains the following new columns: **Expected MW**, **MW**, **MW Delta (Da)**, **MW Delta (ppm)**, **IS Expected MW**, **IS MW**, **IS MW**, **IS MW Delta (Da)**, and **IS MW Delta (ppm)**.

Qualitative Analysis

Qualitative analysis is the identification of a target or unknown compound. In mass spectrometry, determining which compound is present is accomplished using mass accuracy, retention time, isotope pattern, library searching, and formula finding. Using all of these tools together can increase the confidence in identifying both targeted and non-targeted compounds in unknown samples.

Retention Time

Most mass spectrometers use some type of chromatography. The retention time for a compound is determined by injection of a known standard of the compound. Retention time can be used to help identify target compounds in a sample. If the suspected compound is in an unknown sample, then the closer the retention time is to the retention time of the standard, the more likely the unknown compound can be identified. Retention times can change and must be routinely confirmed using a known standard.

Isotope Pattern

The full scan mass spectrum from a compound in a mass spectrometer has a distinct isotope pattern based on its molecular formula.

For the isotope pattern for morphine, refer to the following figure.

Figure A-8 Isotope Pattern (Morphine)

This isotope pattern for imazalil is comprised of the different mass isotopes for the elements. The isotope pattern is calculated theoretically and then compared to what was actually acquired for the compound in the unknown. The closer the match between the theoretical and the actual isotope pattern, the more likely it is that the compound has been identified.

Library Searching

Comparing acquired MS/MS spectra from unknown samples to a database of compounds with reference spectra is one of the most powerful tools in qualitative analysis. Library search algorithms compare the unknown spectra from the sample and then try to match the spectra to the known compounds and spectra in the database. The closer the match and the higher the reported score are, the more likely it is that the compound was identified.

The purity, fit and reverse fit are calculated as follows:

- If there is a peak at a given mass in both the (reduced) library spectrum and the (reduced) unknown spectrum whose intensity ratio is within the limits specified by the user, the intensity of the peak in the library spectrum is set equal to that of the unknown spectrum
- The purity is calculated as:

100.0 $(UL_{total})^2$ / $(U_{total} \cdot L_{total})$ where:

 $U_{\text{total}} = \sum U_{\text{m}} \cdot U_{\text{m}}$ $L_{\text{total}} = \sum L_{\text{m}} \cdot L_{\text{m}}$ $UL_{\text{total}} = \sum U_{\text{m}} \cdot L_{\text{m}}$

The sums include all masses where the intensities U_m and L_m are the square roots of the mass-weighted, that is reduced; unknown; and library entries. The purity is guaranteed to fall in the range between 0 to 100 and is a measure of the similarity of the library spectrum and the unknown spectrum.

- The fit is calculated in exactly the same manner as the purity, except that only masses which occur in the library spectrum are included in the sums. This has no effect on L_{total} or UL_{total} because no terms are deleted from these sums. The fit is a measure of the degree to which the library spectrum is contained in the unknown spectrum. A high fit and a low purity indicates that the unknown spectrum is likely impure, but contains the library compound.
- The reverse fit is also calculated in the same manner as the purity, except that only masses that occur in the unknown spectrum are included in the sums. The reverse fit is a measure of the degree to which the unknown spectrum is contained in the library spectrum.

Formula Finding

Using a mass number, the formula finding algorithm tries to predict the chemical formula for the compound, based on the MS and MS/MS spectra generated by a mass spectrometer. A high formula finding score does not necessarily mean that the compound in the sample is the one identified by formula finding algorithm, because several formula often match within the mass error. Care must be taken and other confirmatory testing must be done before a compound is identified using formula finding.

Note: It is not recommended to perform formula finding with nominal mass systems.

The formula finding algorithm uses the traffic light settings for mass accuracy. A red ppm error earns a score of 0 and a perfect match earns a score of 100.

The MS spectrum contributes 67% to the final formula finding score and the MS/MS spectrum contributes 33%. As a result, the ability of the formula to predict the MS mass is the primary influence on the score. However, the matching of the MS/MS fragments also influences the score.

The isotope pattern is used to generate the list of found formula, but it is not used to generate the final score. Therefore a formula with the wrong isotope pattern will probably not be included in the list.

A list of possible formulas is determined using precursor mass accuracy, isotopic pattern, and MS/MS fragmentation. Proposed formulas are scored based on precursor mass accuracy and average MS/MS mass accuracy of matching fragments.

Integration

In quantitative or qualitative analysis, integration refers to the generation of chromatographic peak areas or heights for the compounds of interest. A processing method contains all of the information needed to process the data.

The compilation of quantitative or qualitative information for a given set of samples is called a Results Table. Refer to Results Tables.

The software has three integration algorithms that can be used:

- MQ4: Selects a low concentration, but not the lowest concentration, standard or quality control sample by default as the representative sample of the analytical run.
- AutoPeak: Selects a high concentration, but not saturated, standard or quality control sample by default as the representative sample of the analytical run.
- Summation: Does not perform a normal peak search, but assumes that a peak is present close to the expected retention time.

It is also possible to manually integrate peaks that were missed by the algorithms.

AutoPeak Integration Algorithm Parameters

The following parameters are used to identify and report the peak of interest.

For a complete list of available parameters, refer to the Help System.

- **Local peak baseline:** The software assesses changes to the baseline locally around the peak as opposed to calculating the baseline with respect to the entire chromatogram.
- Linear peak baseline: The software fits a line between the points at the beginning and at the end of that specific group of peaks as opposed to the possibility of having a non-linear baseline below the peak.

Saturation correction: When the algorithm detects that a peak is saturated, it uses the model to predict how the peak might look if the detector had not saturated. This causes the profile to extend above the top of the peak to approximate the response that would have been obtained. This can extend the linear dynamic range of calibration curves. This option is only available when setting the overall algorithm default values and not during processing method creation or individual peak review, because it is not useful to use this setting for only some peaks.

Minimum Signal/Noise

If the minimum signal to noise is set to seven, as shown in the left graph in the following figure, then the peak is not reported. If the minimum signal to noise is set to two, as shown in the right graph, then the peak is reported. This parameter does not affect integration.

Figure A-9 S/N Threshold

Confidence Threshold

This parameter is used to filter potential peaks that are false positives. The default value is 50%, which is usually suitable. However, the user might want to use a larger value for very noisy data or for data for which the peak width has considerable variation from sample-to-sample.

The following two figures show how the **Confidence Threshold** affects the number of peaks identified. If the **Confidence Threshold** is set to 50%, then the peak with a little shoulder is identified as one peak. If the **Confidence Threshold** is lowered to 16%, then the SignalFinder algorithm finds two peaks. Drag across the two peak regions to view the two peaks.

To determine which other peaks are potentially present in this single peak, and if the correct **Confidence Threshold** is not known, press **Ctrl** and then drag across the peak region of interest. This automatically lowers the **Confidence Threshold** to reveal the second peak of interest that is not present when the **Confidence Threshold** is set to 50%.

Figure A-10 50% Confidence

At 16% confidence, two peaks are found. Drag across the peak area to identify the two peaks.

Figure A-11 16% Confidence

Figure A-12 Confidence Threshold Parameter

Local versus Global Peak Baselines

The peak baseline can be local or global. If the local option is selected, then the quantitation software assesses changes to the baseline locally. The global option uses the entire chromatogram as the baseline.

For an example showing when the local baseline should be used, refer to the following figure. The left graph shows a chromatogram that was properly integrated using the local baseline. The right graph shows the same chromatogram, improperly integrated using the global baseline.

Figure A-13 Use Global Baseline

Linear versus Non-linear Peak Baselines

The peak baseline can be set to linear or non-linear. The non-linear option estimates the baseline under each peak. The linear option fits a line between the points at the beginning and end of that specific group of peaks. For examples of linear and non-linear baselines for co-eluting peaks, refer to Figure A-14 and Figure A-15. Items 1 to 4 are convolved peaks. Item 5 shows the baseline, as derived with the different options.

A non-linear baseline is recommended for multiple peaks. For a single peak, the difference between the linear and non-linear baseline is insignificant.

Figure A-14 Example of a Linear Baseline

Figure A-15 Example of a Non-linear Baseline

MQ4 Integration Algorithm Parameters

The following parameters are used to identify and report the peak of interest. For a complete list of available parameters, refer to the Help System.

Noise Percentage

This parameter is used to estimate the noise level in the chromatograms. The specified percentage of the data points with the smallest intensity are assumed to be noise.

Typical values range from 20% to 60%. If small peaks in the presence of larger peaks are not being found, then the noise percentage should be lowered. The following figure shows an example of a small peak in the presence of an extremely large peak. This peak is not found when the noise percentage is set to 90% but is found when the noise percentage is set to 40%.

Figure A-16 Peak of Interest

In the following figure, the left graph shows the noise percentage set to 40%. The right graph is set to 90%.

Figure A-17 Noise Levels

Baseline Subtract Window

After smoothing, but before other processing, chromatograms are baseline subtracted to remove humps in the data. For each data point, the baseline is calculated using the data points on both the left and right side of the current point with minimum intensity, within the subtraction window.

The exact value of this parameter is not critical, provided that it is set at least a few times larger than the expected peak width.

In the following figure, the left graph shows the baseline subtraction window set to 0.1 minutes and the right graph shows the baseline subtraction window set to 1 minute.

Figure A-18 Baseline Subtraction Window

Peak Splitting

This parameter controls whether a potentially noisy peak is found as one single peak or as two or more separate peaks. If the dip between two potential peaks is less than the specified value, then a single peak is found. Otherwise, two peaks are found.

Setting this parameter to a large value will prevent noisy peaks from being split and found as two separate peaks. However, a smaller value needs to be used if there are two closely eluting (overlapping) distinct peaks.

In the following figure, the left graph shows Peak Splitting set to two points. The right graph shows Peak Splitting set to three points.

Figure A-19 Peak Splitting

Regression

The area or height of the analyte peaks is plotted against the known concentrations in the Calibration Curve and Metric Plot. Subsequently, a line is fitted to the points. This regression line is used to calculate the concentration of the unknown samples.

Regression Equations

This section describes the equations used to calculate the regression curves. In the following equations, *x* represents the analyte concentration for standard samples and *y* represents the corresponding peak area or height. The exact variables used for the regression depend on whether an internal standard is being used and whether the peak area or the peak height is used as shown in the following table.

Internal Standard Used?	Area Used?	x	У
Yes	Yes	C _a / C _{is} / DF	A _a / A _{is}
Yes	No	C _a / C _{is} / DF	H _a / H _{is}
No	Yes	C _a / DF	A _a
No	No	C _a / DF	H _a

Table A-3 Regression Variables

where:

- C_a = actual analyte concentration
- C_{is} = internal standard concentration
- DF = dilution factor
- A_a = analyte peak area
- A_{is} = internal standard peak area
- H_a = analyte peak height
- H_{is} = internal standard peak height

Weighting Types

The following table shows how the weighting factor (w) is calculated for each of the seven weighting types.

Weighting Type	Weight (w)		
None	Always 1.0.		
1 / x	If $ x < 10^{-5}$, then w = 10 ⁵ . Otherwise, w = 1 / $ x $.		
1 / x ²	If $ x < 10^{-5}$, then w = 10 ¹⁰ . Otherwise, w = 1 / x^2 .		
1 / y	If $ y < 10^{-8}$, then w = 10 ⁸ . Otherwise, w = 1 / $ y $.		
1 / y ²	If $ y < 10^{-8}$, then w = 10 ¹⁶ . Otherwise, w = 1 / y ² .		
ln (x)	If x < 0, then an error is generated. If x < 10^{-5} , then w = ln 10^{5} . Otherwise, w = ln (x) .		
ln (y)	If y < 0, then an error is generated. If y < 10^{-8} , then w = ln 10^{8} . Otherwise, w = ln (y) .		

Table A-4 Weighting Types

Correlation Coefficient

In the regression equations, *x*, *y*, and *w* are as defined previously. All sums are calculated over all standard samples, with the exception of those standard samples that are marked as not used.

The correlation coefficient is calculated as:

where:

$$D_y = \sum w \sum wy^2 - (\sum wy)^2$$

• $y_c = Y$ -value calculated using the appropriate equation for the regression type

$$D_{ye} = \sum w \sum w y_e^2 - \left(\sum w y_e\right)^2$$

Regression Types

In the Analytics workspace, the following types of regression are available:

- Mean (Metric Plot pane only)
- Median (Metric Plot pane only)
- Linear (y = mx + b)
- Linear through Zero (y = mx)
- Mean Response Factor
- Quadratic ($y = a^2 + bx + c$)

- Power
- Wagner
- Hill

Note: The **Remove outliers automatically from the calibration curve** option on the Regression Options dialog in the Calibration Curve pane automatically applies the automatic outlier removal rules to the selected components of interest. Refer to the Help.

Linear

The linear calibration equation is:

y = mx + b

The slope and intercept are calculated as:

$$m = \left(\sum w \sum wxy - \sum wx \sum wy\right) / D_x$$
$$b = \left(\sum wx^2 \sum wy - \sum wx \sum wxy\right) / D_x$$

where:

$$D_x = \sum w \sum wx^2 - \left(\sum wx\right)^2$$

Linear Through Zero

The linear through zero calibration equation is:

y = mx

The slope is calculated as:

$$m = \sum wxy / \sum wx^2$$

Mean Response Factor

The mean response factor calibration is:

y = mx

This is the same equation as for the linear though zero calibration. However, the slope is calculated differently as:

$$m = \sum w (y / x) / \sum w$$

and the standard deviation of the response factor as:

$$\sigma = \sqrt{(nD/(n-1))} / \sum w$$

where:

$$D = \sum w^* \sum wy^2 / x^2 - (\sum wy / x)^2$$

Note: Points whose x value is zero are excluded from the sums.

If there is some linearity and some curvature in the line of points, then use power regression instead of linear or quadratic regression to produce a line somewhere between these fits.

Quadratic

The quadratic calibration equation is:

$$y = a_2 x^2 + a_1 x + a_0$$

The polynomial co-efficients are calculated as:

$$a_2 = (b_2/b_0 - b_5/b_3) / (b_1/b_0 - b_4/b_3)$$

$$a_1 = b_5/b_3 - a_2b_4/b_3$$

$$a_0 = \left(\sum wy - a_1 \sum wx - a_2 \sum wx^2\right) / \sum w$$

where:

$$b_{0} = \sum wx / \sum w - \sum wx^{2} / \sum wx$$
$$b_{1} = \sum wx^{2} / \sum w - \sum wx^{3} / \sum wx$$
$$b_{2} = \sum wx / \sum w - \sum wxy / \sum wx$$
$$b_{3} = \sum wx^{2} / \sum wx - \sum wx^{3} / \sum wx^{2}$$
$$b_{4} = \sum wx^{3} / \sum wx - \sum wx^{4} / \sum wx^{2}$$
$$b_{5} = \sum wxy / \sum wx - \sum wx^{2} y / \sum$$

Power

The power function calibration equation is:

wx

y = ax^p

The equations for the linear calibration are used as described above to calculate the slope (m) and intercept (b), except that x in those equations is replaced by ln x and y is replaced by ln y. When this is done, a and p are calculated as:

 $a = e^b$

p = m

If any of the x- or y-values are negative or zero, then an error is reported.

Wagner

The Wagner calibration equation is:

 $\ln y = a_2 (\ln x)^2 + a_1 (\ln x) + a_0$

The equations for the quadratic calibration are used as described above to calculate a_0 , a_1 , and a_2 , except that x in those equations is replaced by ln x and y is replaced by ln y.

If any of the x- or y-values are negative or zero, then an error is reported.

Hill

The Hill calibration equation is:

 $y = (a + bx^{n}) / (c + x^{n})$

It is not possible to provide an analytical function for solving for a, b, c, and n. Instead, the co-efficients are determined using the iterative Levenberg-Marquardt method.

Automatic Removal of Outliers

An optional feature allows the software to remove outliers from the calibration curve automatically. This time-saving feature is useful for applications with many compounds with different linear range and sensitivity.

When this feature is enabled, the software iteratively surveys all data points to identify a starting range, consisting of four consecutive points, that provides the best linear regression and satisfies user-specified rules for outlier removal. The algorithm calculates multiple regressions for all permutations of the starting points. It considers all valid regressions that satisfy the user-specified rules and takes all of them through the expansion sequence. For all of the valid starting ranges, the success of each expansion depends on the total number of used points, the range of the used levels, and the point with the worst absolute accuracy error in the regression before and after the expansion. The regression that spans the largest range and satisfies the rules is the "winning" regression.

Note: If four data points are not available, then the software will use three. The algorithm will not be applied if less than three points are available.

The rules for automatic removal of outliers are defined in the processing method, and include the following:

• Minimum correlation coefficient (r)

Note: This option uses the correlation coefficient, not the coefficient of determination (r^2) .

- Maximum allowed accuracy error for standard replicates at the lower level of quantitation (LLOQ)
- Maximum allowed accuracy error for standards above the LLOQ
- Maximum percentage coefficient of variation (CV) for multiple replicates of a standard at LLOQ

Note: If %CV is greater than the specified value, then the algorithm removes replicates in decreasing order of accuracy error until the %CV of remaining replicates is less than this value.

• Maximum percentage CV for multiple replicates of a standard at all levels above the LLOQ

Note: If %CV is greater than the specified value, then the algorithm removes replicates in decreasing order of accuracy error until the %CV of remaining replicates is less than this value.

- Whether the specified total number of outliers excludes outliers below the LLOQ and upper limit of quantitation (ULOQ)
- Maximum number of outliers that can be removed for a concentration level
- Total number of outliers that can be removed from a calibration curve

Note: This algorithm is applied to all standards, including those manually excluded.

Note: If the number of replicates that is used to produce the regression is different for each standard level, then the automatic outlier removal feature does not work perfectly and must only be used as a starting point. Review each calibration curve manually.

Tip! Make sure that the tolerance thresholds for standards accuracy in the Acceptance Criteria for the processing method match the thresholds in the Rules for Automatically Removing Outliers for Calibration Standards dialog.

Results Tables

A Results Table is a compilation of the quantitative and qualitative information associated with a set of samples. It includes the calculations for concentration and accuracy determined as a result of interpolating the standard calibration curve. The library search results, formula finding results, and other qualitative analysis results are also available in the Results Table. Area, height, and other numerical characteristics can be shown. The number and type of columns in the Results Tables can be edited for simplified viewing.

Calibration Curves

A calibration curve, also know as a standard concentration curve, is a method for determining the concentration of a substance in an unknown sample by comparing the unknown sample to a set of standard samples of known concentration. The calibration curve is a plot of how the instrument responds (the analytical signal) to changes in the concentration of the analyte (the substance to be measured). The operator prepares a series of standards across a range of concentrations near the expected concentration of the analyte in the unknown sample.

Calibration standards are used to build calibration curves. Incorrect readings or missing readings on some of the calibration samples might indicate issues with the analytical run. Follow acceptable methods found in literature and regulatory agency guidances to create a calibration curve. Examples of good practices in the preparation of calibration curves include:

- Preparing calibration standards in a blank matrix in which the analyte is to be measured.
- Generating a calibration curve for each analyte to be measured.
- Making sure of the coverage of the expected concentration range of the analyte, including typical and atypical specimens.
- Using six to eight standards to generate the curve.

This is not a comprehensive list and other guidances should be used in determining the best practice in developing a calibration curve for the laboratory.

Note: In some analytical runs, single-point calibration standards are used. Single-point calibrations are performed using a matrix blank sample and a single standard concentration. The relationship between instrument response and analyte concentration is determined by the line created by these two points. Both the acquisition and processing methods should be validated before being accepted for their intended use.

Signal to Noise Ratio

When performing quantitative mass spectrometry data processing, it is important to determine whether a given peak is significant or not, where *significant* typically means *exceeding background noise*.

Relative Noise and Signal-to-Noise Calculations

Usually the peak height is compared to background noise measured in a peak-free region where the noise is typically estimated as either one or three times the standard deviation of the data points in this range. This approach is less than ideal for the following reasons:

- · It is subjective, as the noise region is selected manually.
- A background region without a peak might not exist or the region might be too narrow for an accurate estimate of the noise.
- The noise at the peak position might be quite different from that in the selected noise region.
- The factor of 'one or three' is also subjective and different authorities have different recommendations.
- The apparent noise can be altered if the data have been pre-processed. For example, smoothed, or thresholded.

The concept of Relative Noise (Rn), makes it easy to develop a simple method to calculate the expected noise at any point in the data, for comparison with the measured signal. This is a robust, objective metric that can be used to calculate signal-to-noise (S/N) and to evaluate and compare instrument and assay performance. There are many applications of the relative noise concept, one of which is the calculation of S/N.

The basic algorithm works as follows:

1. Devise a noise model that will allow the user to calculate the expected noise at any point in the data record, given the level of the underlying signal at that point.

The noise model can be determined from theoretical considerations or it can be modeled from real measurements for a particular system. For pulse counting detectors, the standard deviation of a signal, and therefore the expected noise, is proportional to the square root of the signal and therefore varies with the signal. In other systems there will be a constant 'white noise' component, possibly combined with an intensity-dependent component.

2. Estimate the underlying signal from the measured signal.

This task can be achieved in many ways, but the simplest is to generate a smoothed version of the data. Refer to the figure: Figure A-20.

3. Measure the actual noise across the data using all points, both peaks and background.

This is achieved by subtracting the underlying signal estimate from the measured signal at each point in the data where the smoothed signal has been subtracted from the original. The result is known as the delta noise. The range of the delta noise is reasonably constant, except where there are large peaks, because the noise is dependent on the signal and therefore greater where the signal is larger. Refer to the figure: Figure A-21.

4. At each data point, calculate the ratio of the measured noise to the expected noise.

That is, at every data point, divide the noise measured in step 3 by the value that the noise model predicts, in this case the square root of the intensity. If the noise model is good, then the sofware generates a series of values that mostly remain bounded by some limits. Refer to the following figure. This figure also shows the plot of

$\Delta noise / \sqrt{intensity}$

Note: This step reduces the large variation in the delta noise and results in a well constrained set of values.

5. Calculate the standard deviation of the ratio values. This is the Rn, an estimate of the most likely relationship between the actual delta noise and that predicted by the model. In the preceding figure, this results in a value of 9.5.

The following figure shows an example of how relative noise can be used to calculate S/N.

As described previously:

noise =
$$R_n \times \sqrt{(baseline)}$$

In this example:

noise = $9.5 \times \sqrt{234} = 145$

If the apex of the peak is used as the signal, then the S/N is 34 (4900/145) and if the height of the smoothed signal is used, then the S/N is 22 (3150/145).

When reporting the S/N, the MQ4 integration algorithm uses the procedure described here and the peak apex as the signal. Because the AutoPeak integration algorithm is fitting a model to the peak, it uses the height of the fitted profile. This results in a smaller reported S/N. However, it is a more accurate value because it is less affected by possible noise spikes. The AutoPeak integration algorithm also has a more sophisticated approach to baseline estimation, so for these two reasons, the S/N values reported by the two algorithms are not identical, although they will usually be similar.

In summary, compared to the usual approach of estimating the noise as the standard deviation of a background region, the relative noise approach to calculating S/N has the following advantages:

- It is much less subjective because a background region need not be selected manually.
- An accurate S/N can be predicted even if no peak-free regions exist in the chromatogram.
- For the AutoPeak and Summation integration algorithms, the baseline, and therefore the noise, is estimated near the peak of interest. For the MQ4 integration algorithm, the baseline is the intensity of the data point at the user-specified noise percentage. For example, if the user-specified noise percentage is 40%, and there are 100 data points, then the MQ4 integration algorithm sorts the data points from the smallest to largest intensity, and uses the intensity of the data point with the fortieth-smallest intensity.

This can make a large difference to the reported S/N value because the background region selected for the usual approach might be much quieter than the background near the peak. As described previously, the S/N calculated using the Relative Noise approach might give smaller values than the usual approach. However, they are more accurate and useful values. Refer to Figure A-23.

To make the **Signal / Noise** column visible in the Results Table, refer to Customize the Results Table.

Note on Signal-to-Noise when Using the AutoPeak Integration Algorithm

Because the AutoPeak integration algorithm calculates signal-to-noise more accurately (and thefore more accurately predicts CVs), if the 1-sigma signal-to-noise approach is used, then consider decreasing the minimum acceptable signal-to-noise value on any standard operating procedures (SOPs), based on empirical data from the laboratory.

Signal-to-Noise Using Peak-to-Peak

If this signal-to-noise algorithm is used, then the software calculates the signal-to-noise ratio by taking the standard deviation of all of the chromatographic data points between the specified background start and background end times. The software calculates the signal-to-noise ratio for the active chromatogram, subtracts the average background signal from the selected peak, and

then divides the subtracted signal by the peak-to-peak noise level. It then differentiates the noise and peak regions based on the maximum intensities of each region. Upon completion, the active chromatogram is labeled with the signal-to-noise ratio.

Signal-to-Noise Using Standard Deviation

When this signal-to-noise algorithm is used, the software calculates the signal-to-noise ratio of chromatographic peaks and labels them. This algorithm requires that two regions be selected on the chromatogram:

- The noise region
- · The peak of interest

The software then determines which region contains the peak and which region contains the noise, based on maximum intensities in each selection. It subtracts the average background signal intensity from the peak signal intensity and then divides the subtracted signal by a user-specified factor multiplied by the standard deviation of the noise region.

Define Noise Regions

Use this procedure to define noise regions if the standard deviation or peak-to-peak algorithm is used.

Note: Only one signal-to-noise algorithm can be used in a Results Table. To apply a different signal-to-noise algorithm to the data, change the project defaults and then create a new Results Table.

1. In the project default settings, select the **Standard Deviation** or **Peak-to-Peak** signal-tonoise algorithm.

Tip! To open the project default settings, click **Projects > Project default settings**.

- 2. Create a processing method.
- 3. On the Integration page, click **Options > Show Noise Regions**.
- 4. (If required) Use the mouse to adjust the noise region.

Note: The noise region must be set for each transition.

- 5. Process the data.
- 6. In the Peak Review pane, click **Options > Show Noise Regions**.
- 7. (If required) Use the mouse to adjust the noise region.

Calculated Columns

Calculated columns are formulas that result in new custom columns being added to a Results Table. After a formula is created and the data is processed (or reprocessed), the results of the formula are shown in a new custom column.

Navigating the Calculated Column Interface

Calculated columns are created in a processing method. They can be imported and exported as frml files for later use or sharing.

The following figure shows the interface for the formula editor.

[MQ4] Modify Method Use the calculator to create a new formula mula name Formula 1 I:0 0 Formula Details ote: The "Original text" option is Columns Search Regr uracy Acceptance Treat resulting text values as Error (N/A) Acq. Method Name Acquisition Date & Time Actual Concent Adduct / Charg Area / Height Area Rat Area Ratio of Barcode Baseline Delta / H

Figure A-24 Calculated Columns UI

Description			
The Calculated Columns step in the workflow of the processing method. Click to open the Calculated Columns page. Then click Add Formula (not shown).			
The Formula name field. Type a name for the formula.			
Note: The formula name cannot contain the names of functions on the calculator, square brackets, or rounded brackets.			
The Formula field			
Item	Description		
------	---	--	--
4	 A calculator containing commonly used functions and operators. The following additional operators can be typed in the formula field: > (greater than) 		
	 >= (greater than or equal to) 		
	• < (less than)		
	 <= (less than or equal to) 		
	• != (not equal to)		
	For more information about these operators and functions, refer to the <i>Help System</i> .		
5	Available regression parameters and Results Table columns.		
	Note: This list is not available in <code>qsession</code> tables.		
6	The Treat resulting text values as menu allows the user to configure how text entries are handled. This option is important in Results Table columns that may contain both numeric and text outputs.		
	For example, calculated concentration columns can contain numeric values along with non-numeric values such as N/A, degenerate, and infinity.		

Note: When the user starts to type a formula that uses an array of samples, a sample selection item becomes available.

Simple Extraction of Non-default Information

The calculated columns feature allows users to show information that is not available by default in Results Tables.

For example, to show R^2 as a column in the Results Table, the user can create a formula equal to R^2 .

Figure A-25 Creating a Custom Column with Calculated Columns

Simple Arithmetic

Simple formulas can be created to perform basic mathematical operations.

Example: R²

[r]*[r]

In this example, the R² value is reproduced by using the multiplication operator (*) to multiply the R-value by itself.

Example: Points Per Second Collected

```
[Points Across Baseline]/(([End Time]-[Start Time])*60)
```

In this example, the points across the baseline are divided by the seconds from the beginning to the end of an integrated chromatographic peak. This formula uses the division (/), multiplication (*) and subtraction (–) operators.

More Complex Functions

Many other functions and control structures exist. Some common ones are **MEAN()**, **MAX()**, and **MIN()**, and are shown in the calculator under the formula bar.

For a complete list of syntax details, operators, and functions, refer to the Help System.

Example: MEAN([Area]) for Standards

When using a function that operates on all values, the user can select the samples to be included in the calculation.

Figure A-26 Obtaining the Mean of the Peak Area of Standard Samples Only

CAccept changes and return to Calculated Columns X Discard						
Use the calculator to create a new formula.						
Formula name	Formula name Peak Area Mean					
COUNT	МАХ	STDEV	Clear	MEAN <mark>(</mark> [Area] <mark>)</mark>		
SUM	MIN	MEDIAN	(
MEAN	ABS	IF)			
GET	GETGROUP	GETSTAT	+	I:12		0
/	*		=	Formula Details		
Note: The "Original text" option is recommended for formulas that contain functions, such as the IF function, that compare non-numeric values to numeric values.			d for formulas hat compare	Columns Search	P Regression parameters	MEAN value will be calculated using the following sample types: Unknowns
Treat resulting text values as Error (N/A)			•	Accuracy Acceptance Acq. Method Name Acquisition Date & Time Actual Concentration Adduct / Charge Area Area / Height Area Ratio Area Ratio of comparison	r^2 Slope	Only if the sample name contains Type comma separated text
					Intercept Quadratic coefficient Linear coefficient Constant term	Standards Only if the sample name contains QCs Only if the sample name contains Type comma separated text Blanks
				Asymmetry Factor Barcode	Ŧ	Solvent Blank Double blank

Example: Combining Functions

Simple arithmetic and more complex functions can be combined. For example, to calculate the mean points per second collected, use the following formula:

```
MEAN([Points Across Baseline]/(([End Time]-[Start Time])*60))
```

IF Statements

The **IF** function performs a logical test and returns one value for a true result, and another for a false result. Nested **IF** functions can be used to test more than one condition. The **IF** function can be combined with other logical functions such as **and** and **or** to extend a logical test.

Note: "&&" and "||" can be used for **and** and **or**, respectively. The **and** and **or** operators must be surrounded by spaces, but the && and || operators do not need to be.

The basic **IF** statement syntax is as follows:

if(<condition>;<value if true>;<value if false>)

- <condition> is a value or logical expression that can be evaluated as true or false.
- <*value if true*> is a value to be returned and shown in the corresponding Results Table column when <*condition*> evaluates to true.
- <*value if false>* is a value to be returned and shown in the corresponding Results Table column when <*condition>* evaluates to false.

Note: The **IF** function symbol can be selected from the calculator, typed, or copied from another source. It can be used in **if** or **IF** syntax.

The **IF** function allows other numeric functions, such as **MEAN**, **STDEV**, and so on, to be used within the formula as well, in the *<condition>*, *<value if true>*, or *<value if false>* expressions.

Example: <condition>

Some examples of a <condition> include:

```
[Peak Area]>5000
[Component Name]='Analyte 1'
```

[Retention Time] > 1 and [Retention Time] <2

Example: <value if true> and <value if false>

<value if true> and <value if false> can be either numeric or text.

```
if([Retention Time]> 1 and [Retention Time]<2; '1-2 min RT window';
'not applicable')</pre>
```

Example: Mean Value for Internal Standard Area

In this example, the mean value of the internal standard (IS) area is calculated across the desired samples and compared to a value of 1e6. The mean IS area value is shown in the corresponding Results Table column if **MEAN** (**[IS Area]**) is greater than 1e6, that is, if the

<condition> is true. If **MEAN ([IS Area])** is less than 1e6, that is, if the <condition> is false, then the Results Table column contains **Review IS performance**, the <*value if false*>.

```
IF(MEAN([IS Area])>=1e6;'MEAN([IS Area])';'Review IS performance')
```

Note: Only IF functions can contain multiple calculations.

Treat Resulting Text Values As

The **Treat resulting text values as** option determines how text is interpreted in a custom Results Table column that contains either text or a combination of numbers and text. For example, the **Sample Type** column contains only text, the **Precursor Mass** column contains only numeric values, and the **Calculated Concentration** column might contain both numeric values and text.

Depending on the functions used in a formula, the **Treat resulting text values as** option enables specific interpretation of the text values in the column on which the calculation is based. The available options include:

- Zero
- Ignore (blank)
- Error (N/A)
- Original text

Note: For more information about these options, refer to the Help System.

If calculations are based on the COUNT, MAX, STDEV, SUM, MIN, MEDIAN, GET, GETGROUP, SLOPE, INTERCEPT, MAD, or GETSTAT functions, then the recommended options are Zero, Ignore (blank), or Error (N/A). These options are also recommended in IF statements when the formula contains columns that are expected to have numeric values.

Original text is the recommended option in **IF** statements where components of the <*condition>*, *<value if true>*, and *<value if false>* expressions might be both numeric and text, especially when additional functions are used.

Note: In **IF** statements with more than one *<condition>*, failure to evaluate even one *<condition>* results in a *<value if false>* output in the custom results table column.

Example

In this example, the columns used in the formula might contain both text and numeric values. Therefore, the **Original text** option is recommended.

```
IF([Sample Type]='Unknown'&&(GET([Calculated Concentration];
'Analyte 1')+GET([Calculated Concentration];'Analyte 2'))<=15;</pre>
```

```
'Low Range';IF([Sample Type]='Unknown'&&(GET([Calculated
Concentration]
;'Analyte 1')+GET([Calculated Concentration];'Analyte 2'))
<=65;'Normal Range';'Over normal range'))</pre>
```

This **IF** formula contains both the **Sample Type** and **Calculated Concentration** columns. Values in the **Sample Type** column should be treated as **Original text**. For the **Calculated Concentration** column, it might be necessary to treat non-numeric values such as <0 and **Degenerate** as **Zero**.

Because non-numeric values must be treated differently, we recommend that the user split the formula into multiple smaller formulas, for finer control of non-numeric values.

Exact Masses and Chemical Formulas

PPG

Table B-1 contains the exact monoisotopic masses and charged species (positive and negative) observed with the PPG (polypropylene glycol) calibration solutions. The masses and ions were calculated using the formula $M = H[OC_3H_6]_nOH$, while the positive ion MSMS fragments used the formula, $[OC_3H_6]_n(H^+)$. In all calculations, H = 1.007825, O = 15.99491, C = 12.00000, and N = 14.00307.

Note: When performing calibrations with the PPG solutions, use the correct isotope peak.

	- (- (- ((B.B N.H)2±	(11 - 0001)-
n	Exact Mass (M)	$(M + NH_4)^+$	MSMS Fragments	$(M + NH_4)^{2^+}$	(M + COOH) ⁻
1	76.05242	94.08624	59.04914	56.06003	121.05061
2	134.09428	152.12810	117.09100	85.08096	179.09247
3	192.13614	210.16996	175.13286	114.10189	237.13433
4	250.17800	268.21182	233.17472	143.12282	295.17619
5	308.21986	326.25368	291.21658	172.14375	353.21805
6	366.26172	384.29554	349.25844	201.16468	411.25991
7	424.30358	442.33740	407.30030	230.18561	469.30177
8	482.34544	500.37926	465.34216	259.20654	527.34363
9	540.38730	558.42112	523.38402	288.22747	585.38549
10	598.42916	616.46298	581.42588	317.24840	643.42735
11	656.47102	674.50484	639.46774	346.26933	701.46921
12	714.51288	732.54670	697.50960	375.29026	759.51107
13	772.55474	790.58856	755.55146	404.31119	817.55293
14	830.59660	848.63042	813.59332	433.33212	875.59479
15	888.63846	906.67228	871.63518	462.35305	933.63665
16	946.68032	964.71414	929.67704	491.37398	991.67851

 Table B-1 PPG Exact Masses

n	Exact Mass (M)	(M + NH ₄) ⁺	MSMS Fragments	(M + NH ₄) ²⁺	(M + COOH) [_]
17	1004.72218	1022.75600	987.71890	520.39491	1049.72037
18	1062.76404	1080.79786	1045.76076	549.41584	1107.76223
19	1120.80590	1138.83972	1103.80262	578.43677	1165.80409
20	1178.84776	1196.88158	1161.84448	607.45770	1223.84595
21	1236.88962	1254.92344	1219.88634	636.47863	1281.88781
22	1294.93148	1312.96530	1277.92820	665.49956	1339.92967

Table B-1 PPG Exact Masses (continued)

Reserpine

Table B-2 Reserpine Exact Masses (C₃₃H₄₀N₂O₉)

Description	Mass
Molecular Ion $C_{33}H_{41}N_2O_9$	609.28066
Fragment C ₂₃ H ₃₀ NO ₈	448.19659
Fragment C ₂₃ H ₂₉ N ₂ O ₄	397.21218
Fragment C ₂₂ H ₂₅ N ₂ O ₃	365.18597
Fragment C ₁₃ H ₁₈ NO ₃	236.12812
Fragment C ₁₀ H ₁₁ O ₄	195.06519
Fragment C ₁₁ H ₁₂ NO	174.09134

Contact Us

Customer Training

- In North America: NA.CustomerTraining@sciex.com
- In Europe: Europe.CustomerTraining@sciex.com
- Outside the EU and North America, visit sciex.com/education for contact information.

Online Learning Center

SCIEX Now Learning Hub

SCIEX Support

SCIEX and its representatives maintain a staff of fully-trained service and technical specialists located throughout the world. They can answer questions about the system or any technical issues that might arise. For more information, visit the SCIEX website at sciex.com or contact us in one of the following ways:

- sciex.com/contact-us
- sciex.com/request-support

CyberSecurity

For the latest guidance on cybersecurity for SCIEX products, visit sciex.com/productsecurity.

Documentation

This version of the document supercedes all previous versions of this document.

To view this document electronically, Adobe Acrobat Reader is required. To download the latest version, go to https://get.adobe.com/reader.

To find software product documentation, refer to the release notes or software installation guide that comes with the software.

To find hardware product documentation, refer to the documentation DVD for the system or component.

The latest versions of the documentation are available on the SCIEX website, at sciex.com/ customer-documents.

Note: To request a free, printed version of this document, contact sciex.com/contact-us.